
RG-002-0-EN-(Programming Reference Guide) ver 1.10 eWON® - 25/06/2013 - ©eWON sa

eWON Family
500, 2001, 2001CD, 4001, 4001CD, 2101, 2101CD, 4101, 4101CD,

4002, 4102, 2104, 4104, 2005, 2005CD, 4005, 4005CD

Programming Guide

ver 1.10

COOL INTERNET TELECONTROL SOLUTION

Programming Guide
1 Programming the eWON ..4
 1.1 BASIC language definition ..4
 1.1.1 Introduction ...4
 1.1.2 Program flow ...4
 1.1.3 Character string ...7
 1.1.4 Command ..7
 1.1.5 Integer ...7
 1.1.6 Real ...7
 1.1.7 Alphanumeric character ..7
 1.1.8 Function ..8
 1.1.9 Label ..8
 1.1.10 Operators priority ..8
 1.1.11 Type of Variables ..8
 1.1.11.1 Integer variable ...8
 1.1.11.2 Real variable ...8
 1.1.11.3 Alphanumeric string ...9
 1.1.11.4 Characters arrays ..9
 1.1.11.5 Real arrays ..9
 1.1.12 TagName variable ...10
 1.1.13 Tag Access ..10
 1.1.14 Limitations of the BASIC ...10
 1.2 List of the keywords ..11
 1.2.1 Syntax convention ...11
 1.2.2 # (bit extraction operator) ...11
 1.2.3 ABS ...11
 1.2.4 ALMACK ...11
 1.2.5 ALSTAT ...12
 1.2.6 AND ..12
 1.2.7 ASCII ..12
 1.2.8 BIN$..13
 1.2.9 BNOT ..13
 1.2.10 CFGSAVE ..13
 1.2.11 CHR$..13
 1.2.12 CLEAR ..14
 1.2.13 CLOSE ..14
 1.2.14 CLS ...14
 1.2.15 DAY ..14
 1.2.16 DEC ...15
 1.2.17 DIM ...15
 1.2.18 DOW ...15
 1.2.19 DOY ..16
 1.2.20 DYNDNS ..16
 1.2.21 END ..16
 1.2.22 EOF ...17
 1.2.23 ERASE ..17
 1.2.24 FCNV ..18
 1.2.24.1 Convert from an IEEE float representation ..18
 1.2.24.2 Compute CRC16 of a string ...19
 1.2.24.3 Compute LRC of a string ...19
 1.2.24.4 Convert from an Integer representation ..19
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 1

Programming Guide
 1.2.24.5 Convert string to a Float using a SFormat specifier ...19
 1.2.24.6 Convert string to an Interger using a SFormat specifier20
 1.2.24.7 Convert time as string into time as Integer ...20
 1.2.25 FOR NEXT STEP ...20
 1.2.26 GET ...21
 1.2.26.1 /usr Syntax [function] – Binary mode ..21
 1.2.26.2 /usr Syntax [function] – Text mode ..21
 1.2.26.3 COM Syntax [function] – Binary mode ...22
 1.2.26.4 TCP/UDP Syntax [function] – Binary mode ..22
 1.2.27 GETFTP ..22
 1.2.28 GETHTTP ...23
 1.2.29 GETIO ...23
 1.2.30 GETSYS, SETSYS ...24
 1.2.30.1 Extended syntax to access IOServer lists of parameters27
 1.2.31 GO ...27
 1.2.32 GOSUB RETURN ..28
 1.2.33 GOTO ..28
 1.2.34 HALT ..28
 1.2.35 HEX$..28
 1.2.36 IF THEN ELSE ENDIF ..29
 1.2.36.1 Short IF Syntax ...29
 1.2.36.2 Long IF syntax ..29
 1.2.37 INSTR ...29
 1.2.38 INT ..29
 1.2.39 IOMOD ...30
 1.2.40 IORCV ..30
 1.2.41 IOSEND ..31
 1.2.42 LEN ...31
 1.2.43 LOGEVENT ...32
 1.2.44 LOGIO ..32
 1.2.45 LTRIM ..32
 1.2.46 MOD ...33
 1.2.47 MONTH ..33
 1.2.48 NOT ..33
 1.2.49 NTPSync ...33
 1.2.50 ONxxxxxx ...33
 1.2.51 ONALARM ..34
 1.2.52 ONCHANGE ..34
 1.2.53 ONDATE ..35
 1.2.53.1 Timer Interval settings ..35
 1.2.54 ONERROR ..36
 1.2.55 ONPPP ..37
 1.2.56 ONSMS ...37
 1.2.57 ONSTATUS ..38
 1.2.58 ONTIMER ..38
 1.2.59 ONVPN ...38
 1.2.60 ONWAN ...39
 1.2.61 OPEN ..40
 1.2.61.1 Introduction to file management ..40
 1.2.61.2 OPEN general syntax ...40
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 2

Programming Guide
 1.2.61.3 Different File/stream types ...41
 1.2.61.3.1 FILE open /usr ...41
 1.2.61.3.2 TCP or UDP stream open Syntax [command] ...41
 1.2.61.3.3 COM port open Syntax [command] ..42
 1.2.61.3.4 EXP export bloc descriptor open Syntax [command] 42
 1.2.62 OR ...43
 1.2.63 PI ...43
 1.2.64 PRINT - AT ..43
 1.2.65 PRINT # ...44
 1.2.66 PUT ...44
 1.2.66.1 File Syntax[Command] – Binary mode ..44
 1.2.66.2 File Syntax[Command] – Text mode ...45
 1.2.66.3 COM Syntax[Command] – Binary mode ...45
 1.2.66.4 TCP/UDP Syntax[Command] – Binary mode ...45
 1.2.67 PUTFTP ..46
 1.2.68 PUTHTTP ...47
 1.2.69 REBOOT ...48
 1.2.70 REM ..48
 1.2.71 RENAME ..48
 1.2.72 RTRIM ..48
 1.2.73 SENDMAIL ..49
 1.2.74 SENDSMS ..49
 1.2.75 SENDTRAP ..50
 1.2.76 SETIO ...51
 1.2.77 SETTIME ..51
 1.2.78 SFMT ..52
 1.2.78.1 Convert float to IEEE float representation ...52
 1.2.78.2 Convert integer to string ...53
 1.2.78.3 Convert a float to a string using a SFormat specifier53
 1.2.78.4 Convert an integer to a string using a SFormat specifier54
 1.2.78.5 Convert time as Integer into time as String ..54
 1.2.79 SGN ...54
 1.2.80 SQRT ..55
 1.2.81 STR$...55
 1.2.82 TIME$...55
 1.2.83 TGET ..55
 1.2.84 TSET ...56
 1.2.85 VAL ..56
 1.2.86 WAIT ..57
 1.2.87 WOY ...58
 1.2.88 XOR ..58
 1.3 Debug a BASIC program ...59
 1.4 BASIC Errors Codes ..59
 1.5 Configuration Fields ..60
 1.5.1 SYS Config ...60
 1.5.2 Com Section ..62
 1.5.3 Tag Section ...64
 1.5.3.1 Send on alarm notification patterns* ..66
 1.5.3.2 Setting a Tag value, deleting a Tag and acknowledging an alarm66
 1.5.4 User Section ..67
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 3

Programming Guide
1 Programming the eWON

1.1 BASIC language definition

1.1.1 Introduction
The program of the eWON is based on syntax close to the BASIC, with many specific extensions.

1.1.2 Program flow
 IMPORTANT:

• It is very important to understand how the eWON executes its program.
• You should understand the difference between how the eWON stores the program and how it is executed.
• The eWON has a program task that extracts BASIC requests from a queue and executes the requests.

A request can be:
• A single command, example: MyVar=1
• A branch to a label, example: goto MyLabel
• A list of commands (program block)
In the first case, the command is executed then the BASIC task is ready again for the next request.
In the second case, the BASIC task goes to label MyLabel and the program executes until the END command is encountered or until an
error occurs.
Suppose the eWON has no program, and you create:
An INIT SECTION with:

A CYCLIC SECTION with:

Then create a new section:
MY NEW SECTION with:

Figure 1: eWON cyclic section code

If you download the corresponding program.bas file using an FTP client, you will obtain the following program:

CLS
MyVar=0

FOR V%=0 TO 10
 MyVar = MyVar+1
NEXT V%
PRINT MyVar

MyNewSection:
 MyVar=0
pRINT "MyVar is Reset"

rem --- eWON start section: MY NEW SECTION
rem --- eWON user (start)
MyNewSection:
 MyVar=0
 pRINT "MyVar is Reset"
rem --- eWON user (end)
end
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 4

Programming Guide
As you can see, the code you have entered is present, but the eWON has added some remarks and labels in order to allow edition and to
provide program flow control.
For each section in the editor, the eWON has added an END statement at the end to prevent the program from continuing to the next
section.
The example also shows that any label is global to the whole program and should not be duplicated.
We can also see here that there is not correlation between the section name and the label used in that section. The section name is only
a way to organize program listing during edition in the eWON. The section names can contain spaces while the program labels can't.
When the program starts (click RUN from the web site for example), the eWON posts 2 commands in the Queue:

The eWON BASIC task will read the request in the queue that has the lowest index and will execute it until an END is found or until an
error occurs.
The first command is "goto ewon_init_section". The following lines will be executed:

The END command on the last line will end the program and the BASIC task will check in the queue for a new request:

rem --- eWON end section: MY NEW SECTION
rem --- eWON start section: Cyclic Section
ewon_cyclic_section:
rem --- eWON user (start)
fOR V%=0 tO 10
 MyVar=MyVar+1
nEXT V%
pRINT MyVar
rem --- eWON user (end)
end
rem --- eWON end section: Cyclic Section
rem --- eWON start section: Init Section
ewon_init_section:
rem --- eWON user (start)
CLS
MyVar=0
rem --- eWON user (end)
end
rem --- eWON end section: Init Section

Queue pos Content Type

…

3

2 goto ewon_cyclic_section CYCLIC_SECTION

1 goto ewon_init_section INIT_SECTION

Table 1: BASIC Queue - 1

ewon_init_section:
rem --- eWON user (start)
CLS
MyVar=0
rem --- eWON user (end)
end

Queue pos Content Type

…

3

2

1 goto ewon_cyclic_section CYCLIC_SECTION

Table 2: BASIC Queue - 2
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 5

Programming Guide
The first available command is "goto ewon_cyclic_section", it will also be executed until the END is found.
When this END is executed the BASIC task will detect that the section it has just executed was a CYCLIC_SECTION and it will post a
new "goto ewon_cyclic_section" request in the queue.
This is how the program is continuously executed forever while the BASIC is in RUN mode.
There are a number of actions that can be programmed to occur upon event, like ONTIMER:

Suppose you add the above lines in the INIT SECTION, it will start timer 1 with an interval of 10 seconds and program a "goto MyLabel"
request when timer 1 ellapses.
What actually happens when the ONTIMER occurs is that the eWON posts the "goto MyLabel" request in the BASIC queue.

When the CYCLIC SECTION will be finished, the timer request will be extracted from the queue and then executed.
If the CYCLIC SECTION takes a long time to execute, then the time can elapse more than once during its execution, this could lead to
more timer action to be posted in the queue:

The basic queue can hold more than 100 requests, but if TIMER goes too fast or if other events like ONCHANGE are used the queue can
overflow, in that case an error is logged in the events file and requests are dropped.
You can also see that the ONTIMER request is not executed with the exact precision of a timer, depending on the current load of the
BASIC when the timer elapses. When an ASP block has to be executed for the delivery of a WEB page to a client, the ASP block is also
put in the queue
Example: if ASP block contains the following lines:

TSET 1,10
ONTIMER 1,"goto MyLabel"

Queue pos Content Type

…

3

2 goto MyLabel

1 goto ewon_cyclic_section CYCLIC_SECTION

Table 3: BASIC Queue - 3

Queue pos Content Type

…

5

4 goto MyLabel

3 goto MyLabel

2 goto MyLabel

1 goto ewon_cyclic_section CYCLIC_SECTION

Table 4: BASIC Queue - 4

FromWebVar = Var1!
PRINT #0;TIME$

Queue pos Content Type

…

3 FromWebVar = Var1!
PRINT #0;TIME$

2 goto MyLabel

1 goto ewon_cyclic_section CYCLIC_SECTION

Table 5: BASIC Queue - 5
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 6

Programming Guide
If a request in the queue contains more than 1 BASIC line, what actually happens is the following:
• The block is appended to the end of the program as a temporary section:

The temporary label is called (goto ewon_one_shot_section).
• When the execution is done, the temporary section is deleted from the program.

As a consequence, we have the following:
• Any global variable, or label can be used in REMOTE.BAS or ASP blocks; you can call subroutines in your ASP blocks and

share common variables with the program.
• If a section is being executed when the ASP section is posted, all the requests in the queue must first be executed. This may

have an impact on the responsiveness of the WEB site when ASP is used.
• When using ASP you would better group your blocks to avoid posting too many different requests in the queue. By doing this

you will reduce queue extraction and BASIC context switches.
• If a big amount of ASP request (or long ASP request) is posted to the BASIC by the WEB server, it may slow down normal

execution of the BASIC.
• Sections are never interrupted by other sections: this is always true, when a program sequence is written, it will never be

broken by another execution (of timer or WEB request or anything else).

1.1.3 Character string
A character string can contain any set of characters.

When creating an alphanumeric string with a quoted string the ‘ or " delimiter can be used:

Examples:

"abcd"

’abdc’

"abc‘def’ ghi "

Are 3 valid quoted strings.

A character string can be stored either in an alphanumeric type variable, or in an alphanumeric variable array.

1.1.4 Command
A command is an instruction that has 0 or several comma (,) separated parameters.
There are 2 exceptions to the comma separator: PRINT and PUT.
Examples:

1.1.5 Integer
An integer is a number between -2147483648 and +2147483647. This number can be stored in an integer variable. When a parameter of
integer type is specified for a function or a command and the variable past is of real type, the eWON automatically converts the real value
to an integer value. When the expected value is of integer type and the past value is a character string, the eWON generates an error.

1.1.6 Real
A real number is a number in floating point representation of which value is between -3.4028236 10E38 and +3.4028234 10E38. Value of
this type can be stored in a variable of real type or in an array of reals.

Precision: a Real number has approximately 7 significant digits. This means that conversion of a number with more than 7
significant digits to real will lead to a lost of precision.
When a function expects a real number and an integer is passed, the eWON automatically converts the integer into a real
value. If the function waits for a real and a character string is passed, the eWON generates an error.

eWON uses IEEE 754 single precision representation (32 bits).
So the fraction is coded on 23 bits, which represents about 7 significants digits.
But in the ViewIO page the values are only displayed with 6 digits. If you use the Tag in Basic Scripting you will find the 7 significant digits.

1.1.7 Alphanumeric character
An alphanumeric character is one of the ASCII characters. Each ASCII character has a numerical representation between 0 and 255. The
ASCII basic function returns the ASCII code of a character, and the CHR$ function converts the ASCII code to a string of 1 character.

ewon_one_shot_section::
FromWebVar = Var1!
PRINT #0;TIME$
END

GOTO Label
PRINT
CLS
SETSYS TAG, "name","Power"
SETSYS TAG,"SAVE"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 7

Programming Guide
1.1.8 Function
A function is a BASIC command having 0 or several parameters and returning a result that can be of integer, real or string type.
Examples:

1.1.9 Label
To use the GOTO and GOSUB commands, you need to define LABELS.
A label is a name beginning a line and ended by a colon ‘:’
The label couldn’t have any space character.

The GOTO/GOSUB instruction use the Label name without the colon as parameter.

1.1.10 Operators priority
When these operations appear in expressions, they have the following priority:
• Bracket terms: maximum priority
• All functions except NOT and - (inversion)
• Inversion of sign -
• *, /, ^, MOD (modulo function)
• +, -
• =, >, <, <=, >=, <>
• NOT, BNOT
• AND, OR, XOR: minimum priority

The expressions are ordered by decreasing order of priority.

^ operator is the Power operator
i.e.: 2^4 = 2*2*2*2

See also:

“NOT” on page 33, “BNOT” on page 13, “AND” on page 12, “OR” on page 43, “XOR” on page 58, “MOD” on page 33

1.1.11 Type of Variables

1.1.11.1 Integer variable
Syntax

a%

a is a letter from "a" to "z". The name of the variable is followed by the "%" letter to indicate that it is an integer variable. An integer
variable can contain a number of type integer.

1.1.11.2 Real variable
Syntax

abcdef

abcdef is the name of the variable that can contain up to 200 characters. Variable names are case insensitive:

AbCdEf and ABCDEF represent the same variable.

The variable name can only contain the letters "a" to "z"; all other characters are not allowed. The variable name can contain alphabetical
characters, numbers and "_" underscore, but name must begin with an alphabetical character. Others characters are not allowed.
Examples:

MyVar = 12.3 (valid)

My Var = 12.3 (invalid)

My_Var = 12.3 (valid)

Var1 = 12.3 (valid)

1Var = 12.3 (invalid)

A real variable can contain a real number.

ASCII "HOP"
GETSYS TAG,"NAME"
PI

MyLabel:

 GOTO MyLabel
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 8

Programming Guide
1.1.11.3 Alphanumeric string
Syntax

a$

a is a letter from "a" to "z". The name of the variable is followed by the "$" letter to indicate that it is a string. A string can contain any
number of characters. Its size is modified each time the content of the variable is modified.

It is possible to address parts of a string with the TO keyword:

1.1.11.4 Characters arrays
The number of dimensions is only limited by the memory size of the BASIC.

When the DIM command is called, the array is created and replaces any other DIM or variable existing with the same name. To erase an
array you can either use the CLEAR command that erases all variables, or change the dimension of the array to 1 element with another
call to DIM if you don’t want to clear everything but need to release memory.
An array of which name is a$(E1,E2,E3) and an alphanumeric variable of which name is a$ can exist simultaneously. A characters array
contains E1*E2*E3 *... characters.

Syntax [Command]
DIM a$(E1 [, E2 [, E3 [,....]]])

a$ is the name of the variable array created, its name only contains one active character of "a" until "z". E1 is the number of characters for
the first dimension. E2, E3, E4 are optional and are present if the array must have 2, 3, 4,...dimensions.
Examples:

1.1.11.5 Real arrays
When the DIM command is called, the array is created and replaces any existing array with the same name. To erase an array you can
either use the CLEAR command that erases all variables, or bring back the dimension of the array to 1 element if you don’t want to clear
everything but need to release memory.

In order to assign a value, type a(x, y, z)=value.

An array of which name is a(E1,E2,E3) and a real variable of which name is a CAN exist simultaneously. A real array contains E1*E2*E3
*... reals.

Syntax [Command]
DIM a(E1 [, E2 [, E3 [,....]]])

a is the name of the array variable created, its name contains one character from "a" to "z". E1 is the number of real for the first
dimension. E2, E3, E4 are optional and are present if the array must have 2, 3, 4,… dimensions. The number of dimensions is only limited
by the BASIC memory size.

Example:

A$(4 TO 10) returns a string with chars 4 to 10

A$(4 TO) returns a string with character 4 to end of string

A$(4 TO LEN(A$)) same result

DIM A$(10,20)

DIM Z(6)

A$(4, 3 TO 3) same kind of access with arrays

DIM d(5,5)
d(1,6)=6
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 9

Programming Guide
1.1.12 TagName variable
Syntax

TagName@

TagName is the name of the Tag. Adding the ‘@’ after the Tag name allows direct access to the Tag value. This syntax can be used for
reading or writing to the Tag.

 Examples:
Tag1@ = 25.3
Tag2@ = Tag1@
IF (Tag3@>20.0) THEN …

Only in some cases it is useful to use the GETIO or SETIO commands in order to build the Tag name in the program (to perform some
repetitive operations or if a Tag name begins with a number, it cannot be accessed in Basic using the @ syntax, instead the GETIO,
SETIO function must be used).

 Example:
FOR i%=1 to 10
 A$ = "Tag"+STR$(i%)
 SETIO A$,i%
NEXT i%

1.1.13 Tag Access
All the Basic functions accessing Tags could reference the tag by its name, by its Index or by its ID.

If there are 6 Tags defined in the config, each Tag can be accessed by its index (-0 to -5) or by its ID (the first item of a Tag definition
when reloading the config.txt file, the ID of a Tag is never reused during the live of a configuration until the eWON is formatted) or finally
by its name.

1.1.14 Limitations of the BASIC
• Names of integer and string variables are one character long.
• The maximum number of integer variables is 26 (names are ‘a%’ to ‘z%’).
• The maximum number of string variables is 26 (names are ‘a$’ to ‘z$’).
• This limitation is not applicable to real variable because real names are 200 characters long (maximum). If more strings are

required Arrays of any dimensions can be allocated.
• The eWON BASIC script is limited by the memory reserved for it (128 k). Users have to share this memory space between

the code and the data.

Method Parameter Example Example explanation

Tag name access Tagname String SETIO "TAG1",23.5 Set the value 23.5 in the Tag named TAG1

Index access Negative Integer (or 0) SETIO -2,23.5 Set the value 23.5 in the Tag at the INDEX 2
(the third entry in the var_lst.txt)

TagId access Positive Integer (>0) SETIO 2,23.5 Set the value 23.5 in the Tag with the ID=2

Table 6: Tag Access methods
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 10

Programming Guide
1.2 List of the keywords
The commands and functions used to program the eWON are listed below in alphabetical order.

1.2.1 Syntax convention
In the following keyword usage description, the following convention is used to represent the parameters:

1.2.2 # (bit extraction operator)
Syntax [function]

E1 # E2

• E1= integer word
• E2 = bit position (0 to 31)
Purpose:

The # function is used to extract a bit from an integer variable (and only from an integer).

Example:

1.2.3 ABS
Syntax [function]

ABS E1

Purpose:
The function returns the absolute value of E1. E1 can be a value or a Tag name. See also “Operators priority” on page 8. If the value is
negative, you have to add use ().
Example:

Returns 10.4

1.2.4 ALMACK
Syntax [function]

ALMACK TagRef, S2

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
• S2 is the UserName of the user that will acknowledge the alarm. If this field is the empty field "", then the "adm" login is

assumed for acknowledgement.
Purpose:

The function acknowledges the alarm status of a given Tag.
ALMACK returns error “Operation failed (28)” if the tag is not in alarm.

Example:

Parameter Type

E1,E2,.. Integer

S1,S2,.. String

CA Character (if string passed, first char is evaluated)

Table 7: BASIC keywords syntax convention

i%=5
a%=i%#0
b%=i%#1
c%=i%#2

:Rem Binary 0101
:Rem a%=1
:Rem b%=0
:Rem c%=1

ABS (-10.4)

ALMACK "MyTag", "TheMighty"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 11

Programming Guide
1.2.5 ALSTAT
Syntax [function]

ALSTAT TagRef

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
Purpose:

Returns the S1 Tag alarm status. The returned values are:

Example:

1.2.6 AND
Syntax [Operator]

E1 AND E2

Purpose:
Do a bit-wise AND between E1 and E2. Also have a look at the priority of the operators.

Examples:

Returns 0

Returns 2

Returns 1

Keeps first 2 bits.

See also:
“Operators priority” on page 8, “OR” on page 43, “XOR” on page 58

1.2.7 ASCII
Syntax [function]

ASCII CA

Purpose:
The function returns the ASCII code of the first character of the chain CA. If the chain is empty, the function returns 0.
Example:

Returns the ASCII code of the character H

See also:
“CHR$” on page 13

Values Description

0 No alarm

1 Pretrigger: no active alarm but physical signal active

2 In alarm

3 In alarm but acknowledged

4 Returns to normal but not acknowledged

Table 8: Values returned by the ALSTAT command

a% = ALSTAT "MyLittleTag"

1 AND 2

2 AND 2

3 AND 1

MyFirstTag@ AND 3

a% = ASCII "HOP"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 12

Programming Guide
1.2.8 BIN$
Syntax [function]

BIN$ E1

Purpose:
The function returns a string of 32 characters that represents the binary value of E1. It does not work on negative values.

Example:

REM A$ is worth " 00000000000000000000000000000101 " after this affectation

See also:
“HEX$” on page 28

1.2.9 BNOT
Syntax [function]

BNOT E1

Purpose:
This function returns the "bitwise negation" or one's complement of the integer E1.

Example:

Will display 11111111111111111111111111111010

See also:
“Operators priority” on page 8

1.2.10 CFGSAVE
Syntax [Command]

CFGSAVE

Purpose:
Writes the eWON configuration to flash. This command is necessary after SETSYS command on SYS, TAG or USER records because
using SETSYS will modify the configuration in memory. The modification will be effective as soon as the SETSYS XXX,"save" (where
XXX stands for SYS, USER or TAG), but the config is not saved to the eWON flash file system.

See also:
“GETSYS, SETSYS” on page 24

1.2.11 CHR$
Syntax [Function]

CHR$ E1

Purpose:
The function returns a character string with only one character corresponding to the ASCII code of E1. E1 must be contained in the 0..255
range.
Example:

A$ is worth "0" after this affectation

If MyTag=32, then B$ will hold one space.

See also:
“ASCII” on page 12

A$= BIN$ 5

a%=5
b%=BNOT a%
print BIN$(b%)

A$= CHR$ 48

B$=CHR$(getio(MyTag))
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 13

Programming Guide
1.2.12 CLEAR
Syntax [Command]

CLEAR

Purpose:
Erases all variables from the eWON. All DIM are erased. This command cannot be canceled.

1.2.13 CLOSE
Syntax [Command]

CLOSE I1

I1 is the file number (1-8)

Purpose:
This command closes the file with file number I1. If the file is opened for write, it is actually written to the flash file system.
The function can be called even if the file is not opened.

See also:
“EOF” on page 17, “GET” on page 21, “OPEN” on page 40, “PUT” on page 44

1.2.14 CLS
Syntax [Command]

CLS

Purpose:

This command erases the virtual screen of the eWON, visible in the Script control page.

See also:
“PRINT - AT” on page 43

1.2.15 DAY
Syntax [Function]

DAY E1 / S1

• E1 is a date in integer format (number of seconds since 1/1/1970)
• S1 is a date in String format ("18/09/2003 15:45:30")
Purpose:

This function returns an integer corresponding to the value of the day of the month (1--31) that matches a defined time variable.
REM: Do not call the function with a float variable of value (or this would result to error "invalid parameter").

Example 1:

Example 2:

See also:
“DOW” on page 15, “DOY” on page 16, “MONTH” on page 33, “WOY” on page 58

a$ = TIME$
a% = DAY a$

b% = getsys prg,"TIMESEC"
a% = DAY b%
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 14

Programming Guide
1.2.16 DEC
Syntax [Function]

DEC S1

• S1 is the string to convert from HEX to DEC
Purpose:

This function returns an integer corresponding to the hexadecimal value of parameter.
The string is not case sensitive (a023fc = A023FC). The string can be of any length.

Example:

REM Now I%=1234

See also:
“HEX$” on page 28

1.2.17 DIM
Purpose:

The DIM function permits to create variables of array type. Two types of array are available: the characters arrays and the real arrays.

See also:
“Type of Variables” on page 8

1.2.18 DMSYNC
Syntax [Function

DMSYNC

Purpose:
The command has no parameter and will trigger a Data Management synchronisation.
If the Data Management has been configured on the eWON, this command will send the historical data to the Data Management system.

1.2.19 DOW
Syntax [Function]

DOW E1 / S1

• E1 is a date in integer format (number of seconds since 1/1/1970)
• S1 is a date in String format ("18/09/2003 15:45:30")
Purpose:

This function returns an integer corresponding to the value of the day of the week (0--6; Sunday = 0) that matches a defined time variable.
REM: Do not call the function with a float variable of value (or this would result to error "invalid parameter").

Example 1:

Example 2:

See also:
“DAY” on page 14, “DOY” on page 16, “MONTH” on page 33, “WOY” on page 58

A$= HEX$(1234)
I%=DEC(A$)

a$ = TIME$
a% = DOW a$

b% = getsys prg,"TIMESEC"
a% = DOW b%
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 15

Programming Guide
1.2.20 DOY
Syntax [Function]

DOY E1 / S1

• E1 is a date in integer format (number of seconds since 1/1/1970)
• S1 is a date in String format ("18/09/2003 15:45:30")
Purpose:

This function returns an integer corresponding to the value of the current day in the year (0-365) that matches a defined time variable.
REM: Do not call the function with a float variable of value (or this would result to error "invalid parameter").

Example 1:

Example 2:

See also:
“DAY” on page 14, “DOW” on page 15, “MONTH” on page 33, “WOY” on page 58

1.2.21 DYNDNS
Syntax

DYNDNS

Purpose:
The command has no parameter and asks a NO-IP dynamic PPP IP address update to the Dynamic DNS server you have set in Publish
IP address Configuration page.

It will be used to synchronize a Dynamic DNS server such as No-IP with the eWON PPP IP address.

1.2.22 END
Syntax [Command]

END

Purpose:

Indicates the end of the program. This command can also be used to stop the execution of a section. If the program is in RUN mode, this
command will suspend the execution until another section is ready to run (ONCHANGE, CYCLIC etc.).

Example:

See also:
“HALT” on page 28

a$ = TIME$
a% = DOY a$

b% = getsys prg,"TIMESEC"
a% = DOY b%

PRINT " START "
END
PRINT " SUB "
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 16

Programming Guide
1.2.23 EOF
Syntax [function]

EOF E1

• E1 is a number (1-8) corresponding to a /usr file or an ExportBlocDescriptor.
Purpose:

Returns 1 when end of file is reached.
EOF always returns 1 for files opened for write.
EOF works only with OPEN “file:...” or OPEN “exp:...” FileStream.
Example:

See also:
“CLOSE” on page 14, “GET” on page 21, “OPEN” on page 40, “PUT” on page 44

1.2.24 ERASE
Syntax [Command]

ERASE Filename|Keyword

Purpose:
Erase the specified file in the /usr directory. That means this command will not work for a different directory than the "/usr" directory.
Omitting "/usr/" before the filename will result to a syntax error.
The file and directory names are case sensitive.

Example:

in order to erase some root files, some special keywords have been added.

See also:
“RENAME” on page 48

PRINT "open file"
 OPEN "file:/usr/myfile.txt" FOR TEXT INPUT AS 1
ReadNext:
 IF EOF 1 THEN GOTO ReadDone
 A$ = GET 1
 PRINT A$
 GOTO ReadNext
ReadDone:
 PRINT "close file"
 CLOSE 1

ERASE "/usr/myfile.shtm"

Keyword description since Firmware

ERASE "#ircall"
To erase the ircall.bin file,

then all historical logged data 5.7

ERASE "#events"
To erase the events.txt file,

the diagnostics file. 5.7

ERASE "#hst_alm"
To erase the hst_alm.txt file,

the alarms historical file. 5.7

ERASE "/usr"
To erase (and format) completely

the "/usr" directory/partition. 6.2

ERASE "/sys"
To erase (and format) completely

the "/sys" directory/partition. 6.2
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 17

Programming Guide
1.2.25 FCNV
Syntax [function]

FCNV S1,EType[,ESize,SFormat]

• S1 is the string to be converted.
• EType is the parameter determining the type of conversion.
• ESize is the size of the string to convert (can be shorter than the entire S1).
• SFormat is the format specifier for the conversion.

Purpose:
Converts a string to a number (float or integer).
The return value can be an IEEE float, an Integer, a CRC16, a LRC.

The type of conversion is determined by the EType parameter.

See also:
“SFMT” on page 52

1.2.25.1 Convert from an IEEE float representation
The IEEE float representation use four bytes (32 bits).

The string could be LSB first or MSB first.

Example:

EType value conversion type

1 convert string (MSB first) to Float

2 convert string (LSB first) to Float

5 compute the CRC16 on string and return an Integer

6 compute the LRC on string and return an Integer

10 convert string (MSB first) to Integer

11 convert string (LSB first) to Integer

20 convert string to a Float using a SFormat specifier

30 convert string to an Interger using a SFormat specifier

40 convert time as string into time as Integer

FCNV A$, 1 : convert A$(1 to 4) to a float IEEE representation with MSB first

A$(1) = MSB (Exponent+ Sign)... A$(4) = LSB (Mantissa LSB)

FCNV A$, 2 : convert A$(1 to 4) to a float IEEE representation with:

A$(1) = LSB (Mantissa LSB) ... A$(4) = MSB (Exponent+ Sign)

ieee = 0.0
A$="1234"
A$(1) = Chr$(140) : A$(2) = Chr$(186)
A$(3) = Chr$(9) : A$(4) = Chr$(194)
ieee = FCNV A$,2
Print ieee : rem ieee = -34.432176
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 18

Programming Guide
1.2.25.2 Compute CRC16 of a string
Compute the Cyclic Redundancy Check (CRC) of the string.
CRC-16 uses the Polynomical 0x8005 (x16 + x15 + x2 + 1) with an init value of 0xFFFF.
Example:

1.2.25.3 Compute LRC of a string
Compute the Longitudinal Redundancy Check (LRC) of the string.
The LRC computation is the sum of all bytes modulo 256.
Example:

1.2.25.4 Convert from an Integer representation
Convert a string containing several bytes (1 to 4) in an Integer value.
The integer representation could be LSB (Least Significant Byte) first or MSB (Most Significant Byte) first.
The ESize parameter is required. It is the size of the string to convert (it can be 1, 2, 3 or 4).

Example:

1.2.25.5 Convert string to a Float using a SFormat specifier
Convert a string with a float number (ex: A$=“153.24”) to a Float variable using a Format specifier.
The ESize parameter is required. It is the size of the string to convert (use 0 to convert the whole string).
The SFormat parameter is required. It is the format specifier string and must be "%f".
Example:

A$="My string"
c% = FCNV A$,5
print c% : rem c% = 51608

A$="My string"
c% = FCNV A$,6
print c% : rem c% = 125

FCNV A$, 10,4 : convert A$(1 to 4) to an integer representation with MSB first

A$(1) = MSB ... A$(4) = LSB

FCNV A$, 10,2 : convert A$(1 to 2) to an integer representation with MSB first

A$(1) = MSB ... A$(2) = LSB

FCNV A$, 11,4 : convert A$(1 to 4) to an integer representation with LSB first

A$(1) = LSB ... A$(4) = MSB

FCNV A$, 11,2 : convert A$(1 to 2) to an integer representation with LSB first

A$(1) = LSB ... A$(2) = MSB

A$=CHR$(1)+CHR$(4)+CHR$(2)+CHR$(0)
a%=FCNV A$,10,2
b%=FCNV A$,11,2
PRINT a% : rem a% = 260
PRINT b% : rem b% = 1025

c%=FCNV A$,10,3
PRINT c% : rem c% = 66562
c%=FCNV A$,10,4
PRINT c% : rem c% = 17039872

float_0 = FCNV "14.2115",20,0,"%f"
float_1 = FCNV "14.2115",20,4,"%f"
 rem float_0==14.2115 float_1==14.2
float_2 = FCNV "-142.1e3",20,0,"%f"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 19

Programming Guide
1.2.25.6 Convert string to an Interger using a SFormat specifier
Convert a string with an integer number (ex: A$=“154” or A$=”F0E1”) to an Integer variable using a Format specifier.
The ESize parameter is required. It is the size of the string to convert (use 0 to convert the whole string).
The SFormat parameter is required.
It is the format specifier string and can be:
• "%d" if the string holds a decimal number.
• "%o" if the string holds an octal number.
• "%x" if the string holds an hexadecimal bumber.
Example:

1.2.25.7 Convert time as string into time as Integer
Convert a String holding a time in the format “dd/mm/yyyy hh:mm:ss” (ex: “28/02/2007 16:48:22”) into an Integer holding the number of
seconds since 01/01/1970 00:00:00.

Important: Float value have not enough precision to hold the big numbers used to represent seconds since 01/01/1970, this
leads to lost of precision during time conversion.

Example:

See also:
“TIME$” on page 55

1.2.26 FOR NEXT STEP
Syntax

FOR a% = E1 TO E2 STEP E3

NEXT a%

• a% is an integer variable used as a counter.
• E1, E2, E3 are integer values/variables
Purpose:

The instructions between the lines containing the FOR and the NEXT are executed until a% = E2. The loop is always executed at least 1
time, even if E1 is greater than E2.
During first loop execution, a% equals E1. FOR and NEXT cannot be on the same line of program. Do not exit the FOR/NEXT loop by a
GOTO statement because, in this case, after a certain number of executions, the memory of the eWON is full.
Example:

a% = FCNV "1564",30,0,"%d" : rem a%=1564
a% = FCNV "1564",30,2,"%d" : rem a%=15
a% = FCNV "FE",30,0,"%x" : rem a%=254
a% = FCNV "11",30,0,"%o" : rem a%=9

a% = FCNV "24/04/2007 12:00:00",40 : rem a%=1177416000
a% = FCNV "01/01/1980 00:00:00",40 : rem a%=315532800

FOR a%=10 TO 20 STEP 2
 PRINT a%
NEXT a%
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 20

Programming Guide
1.2.27 GET
The GET command works completely differently if the file is opened in Binary mode or in Text mode.
The file syntax has been extended in version 3 of the eWON to allow access to the serial port and to TCP and UDP socket.
The command description describes operation for /usr (Text and Binary modes), COM (always binary) and TCP-UDP (always binary)

1.2.27.1 /usr Syntax [function] – Binary mode
GET E1, E2/S1

• E1 is the file number (1-8)
• E2 is the number of bytes to read from the file

Or
S1 if S1 is used, the function returns file specific information.

Purpose:

Returns a string of char with the data read. Moves the file read pointer to the character following the last character read (or to end of file).

• Get 1, 1 will return max 1 char
• Get 1, 5000 will return max 5000 char
• Get 1 without param is equivalent to Get 1,2048

Example:

1.2.27.2 /usr Syntax [function] – Text mode
GET E1[, E2]

• E1 is the file number (1-4)
E2 optional: buffer size. When a data is read from the file, it must be read in a buffer to be interpreted. The buffer must be able to hold at
least the whole item and the CRLF at the end of the line if the item is the last of the line. The default buffer size is 1000 bytes, if your file
contains items that may be bigger than 1000 bytes, you should specify this parameter, and otherwise you only have to specify the E1
parameter: file number.

Purpose:
Returns a STRING or a FLOAT according to the data read from the file. If the data read is surrounded with quotes, it is returned as a
STRING, if the data read is not surrounded with quotes, it is returned as a FLOAT. The function never returns an INTEGER.
The function moves the file read pointer to the next item. For string items, the ' quote or " quote can be used. The separator between
items is the ‘;’ character. When a CRLF (CHR$(13)+CHR$(10)) is found it is also skipped.
Example:

S1 value Returned information

"SIZE" File total size

OPEN "file:/usr/myfile.bin" FOR BINARY INPUT AS 1
A$ = GET 1,10 REM read 10 bytes
PRINT A$
CLOSE 1

REM file content
123;"ABC"
1.345;"HOP"

DIM A$(2,20)
DIM A(2)
OPEN "/myfile.txt" FOR TEXT INPUT AS 1
I%=1
ReadNext:
 IF EOF 1 THEN GOTO ReadDone
 A(I%) = GET 1
 A$(I%) = GET 1
 I% = I%+1
 GOTO ReadNext
ReadDone:
CLOSE 1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 21

Programming Guide
1.2.27.3 COM Syntax [function] – Binary mode
GET E1,E2

CLOSE

• E1: File number
• E2: maximum number of bytes to read from the serial port.
Purpose:

Returns a string with the data read from the serial port buffer.
If there are no data to read from the buffer the returned string is empty.
If E2 is specified and the buffer contains more than E2 bytes, the function returns with E2 bytes.
If E2 is specified and the buffer contains less than E2 bytes, then the function returns with the content of the buffer.
Then function always returns immediately.

REM: Attempting to USE a serial port used by an IO server is not allowed and returns an error.
Example:

1.2.27.4 TCP/UDP Syntax [function] – Binary mode
GET E1, E2

• E1 is the file number returned by OPEN.
• E2: maximum number of bytes to read from the socket.
Purpose:

Returns a string with the data read from the TCP/UDP socket.
If there are no data to read from the buffer the returned string is empty.
If E2 is specified and the buffer contains more than E2 bytes, the function returns with E2 bytes.
If E2 is specified and the buffer contains less than E2 bytes, then the function returns with the content of the buffer.
If the other party has closed the socket or if the socket is in error at the TCP/IP stack level, the function exits with error (See ONERROR
on page 36)
Then function always returns immediately.

See also:
“CLOSE” on page 14, “EOF” on page 17, “OPEN” on page 40, “PUT” on page 44

1.2.28 GETFTP
Syntax [function]

GETFTP S1, S2 [,S3]

• S1 is the name of the source file (to retrieve on the FTP server)
• S2 is the name of the destination file (to write on the eWON)
• S3 (optional) is the FTP server connection parameters.

If S3 is unused, the FTPServer parameters from the General config page will be used.
Purpose:

Retrieves a file on an FTP server and copy it on the eWON.
The source filename can include a path (built with “/” or “\” depending of the FTP server).
As the destination filename is on the eWON, you must begin by a “/” and can include a path built with “/”.
The S3 parameters is as follow:

[user:password@]servername[:port][,option1]
The option1 parameters is to force PassiveMode, put a value 1 as option1 parameter.
If omitted, option1=0, then eWON will connect in ActiveMode.

This command posts a scheduled action request for a GETFTP generation.

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled action and allows tracking this action. It is also
possible to program an ONSTATUS action that will be called when the action is finished (with or without success).

Examples:

See also:
“ONSTATUS” on page 38, “GETSYS, SETSYS” on page 24, “PUTFTP” on page 46

OPEN “COM:2,... AS 1”
A$=GET 1,100
CLOSE 1

GETFTP "server_file_name.txt","/usr/ewon_file_name.txt"
GETFTP "server_file.txt","/usr/ewon_file.txt","user:pwd@ServerTP.com:21,1"
GETFTP "inst_val.txt","/inst_val.txt"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 22

Programming Guide
1.2.29 GETHTTP
Syntax [function]

GETHTTP S1,S2,S3[,S4]

• S1: Connexion Parameter with the format [user:password@]servername[:port]
• S2: file name to assign on the eWON file name path
• S3: URI of the file on the HTTP server absolute path of the file to be downloaded
• S4 (optional): "PROXY"

Purpose:
The GETHTTP command submit a HTTP GET request. It allows the download of a file (one per GETHTTP command) using its URI.
When the function returns, the GETSYS PRG, returns the ID of the scheduled action and allows tracking of this action. It is also possible
to program an ONSTATUS action that will be called when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the eWON will perform the GETHTTP through a Proxy server. The eWON will use
the Proxy server parameters configured in System Setup / Communication / VPN Global.

Examples:

• download without HTTP basic authentification:

When no port is specified HTTP port 80 is used.

• download with basic authentification and configured HTTP port:

HTTP server is supposed to listen on port 89 at address www.ewon.biz
adm1 is used as login. adm2 is used as password.

• download without HTTP basic authentification through Proxy serveur:

See also:
“ONSTATUS” on page 38, “GETSYS, SETSYS” on page 24, “PUTHTTP” on page 47

1.2.30 GETIO
Syntax [function]

GETIO TagRef

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
Returns the value of the S1 Tag. This value is a FLOAT.
Example 1:

Example 2:

This function is equivalent to A = MyTag@
Warning:
The MYTAG Basic variable is distinct than the memory Tag "MYTAG".

See also:
“SETIO” on page 51

GETHTTP "10.0.100.206","/usr/filename1.txt","/filename1.txt"

GETHTTP "adm1:adm2@www.ewon.biz:89","/usr/filename1.txt","/filename1.txt"

GETHTTP "10.0.100.206","/usr/filename1.txt","/filename1.txt","PROXY"

 A = GETIO "MyTag"

 A = GETIO 12 : rem if TagID =12
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 23

Programming Guide
1.2.31 GETSYS, SETSYS
The GetSys and SetSys function are used to set or get some special parameters of the eWON. There are 5 types of parameters:

Each group has a number of fields that can be read of written.

• PRG group fields:

Group Description

PRG Program parameters like the time in milliseconds or the type of action that
started the program

SYS Edition of the eWON system parameters

COM Edition of the eWON communication parameters

USER Edition of the eWON users list

TAG Edition of the eWON Tag list

INF Information about eWON (debug counter,...)

Table 9: GETSYS and SETSYS parameters

Field name Description

ACTIONID R/W I

After execution of a scheduled action like:
SendSMS
SendMail
PutFTP
SENDTRAP
TCP/UDP Connect (see OPEN command)
The ACTIONID returns the ID of the action just executed. When the ONACTION event is executed, this
ActionId is stored in EVTINFO. Writing to this field is useful to read the current value of an action.

ACTIONSTAT RO I

Current status of the action with ActionID given by ACTIONID. If ACTIONSTAT must be checked,
ACTIONID must first be initialized
Possible values of ACTIONSTAT are:
-1: in progress
-2: ID not found
0: done with success
>0: finished with error = error code
The eWON maintains a list with the status of the last 20 scheduled actions executed. When more actions
are executed, the older status is erased and its ACTIONSTAT may return –2, meaning it is not available
anymore

EVTINFO RO I
The value of this field is updated before executing the ONXXXXX (ONSTATUS, ONERROR, etc.), see the
different ONXXXXX function for the meaning of the EVTINFO parameter

TIMESEC RO I
Returns the time elapsed since 1/1/1970 in seconds. (Useful for computing time differences)
Warning: when you assign this value to a float variable the number is too big and rounding will occur. You
should use an integer variable (ex: a%) to store this value

MSEC RO I
Time in MSEC since eWON has booted
Max value is 134217727 then it wraps to 0

RUNSRC RO I

When program is started, the source of the execution is given by this parameter:
1: Started from the Web site ‘Script Control’ window
2: Started by the FTP server because program has been updated
3: A ‘GO’ command has been executed from the script
4: Automatic program start at eWON boot

PPPIP R/W S/I

This parameter returns the string corresponding to the current PPP IP address. When the eWON is
offline, the value returned is "0.0.0.0". When the eWON is online the value returned is the dotted IP
address allocated for the PPP connection
The parameter can be written in order to disconnect the eWON. The only value accepted when writing in
this parameter is 0 (setsys prg, "PPPIP", 0)

Table 10: PRG group fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 24

Programming Guide
Notes:
RO means read only
R/W means read/write
I,R,S means Integer, Real, String

• SYS fields group:
The fields edited with this group are the one found in the config.txt file under the section System. The fields are described in the
section "Configuration fields".

• COM fields group:
The fields edited with this group are the one found in the comcfg.txt. The fields are described in the section "Configuration fields".
It is possible to tune the modem detection too. See Com Section on page 62.

• INF fields group:
This group holds all information data about eWON. All these fields are Read Only.
The fields displayed from this group are the one found in the estat.htm file.

• TAG fields group:
The fields edited with this group are the one found in the config.txt file under the section TagList. The fields are described in the
section "Configuration fields".

See Tag Section on page 64.

WANIP RO S

This parameter returns the string corresponding to the current WAN IP address. When the eWON is
offline, the value returned is "0.0.0.0".
If no-ip has been called, then WANIP returns the IP returned by no-ip, otherwise the actual physical WAN
IP address (PPP or Ethernet) is returned.
REM1: if getsys prg,"WANIP" is called in a ONWAN event it is likely that if a no-ip request is scheduled
through publish ip address, it is not yet finished when the ONWAN is called.
REM2: getsys prg,"WANIP" returns the same value as getsys prg,"PPPIP" if no-ip is not (yet) called and
WAN interface is on modem, BUT writing to WANIP does not close the WAN connection like writing to
PPPIP may close the PPP connection.

VPNIP RO S Currently allocated VPN ip address. If eWON is not connected to VPN this is 0.0.0.0

TRFWD R/W S
Transparent forwarding IP address. The parameter can be used to write or read the routing parameter.
The parameter is only active when the PPP connection is established

SERNUM R/W S Returns a string with the eWON serial number string

PRIOH R/W I Used for changing the script priority (Currently not documented)

PRION R/W I Used for changing the script priority (Currently not documented)

PRIOT R/W I Used for changing the script priority (Currently not documented)

RESUMENEXT R/W I

Controls the OnError action. Possible values are a combination of:
1: Resume Next mechanism is enabled
4: Do not execute ONERROR
8: Do not show error on virtual screen
This parameter is useful when testing the existence of a variable, file or other
Example: Testing the existence of a file can be done by opening it and see if it generated an error. The
Error result is accessible through LSTERR

LSTERR R/W I

Contains the code from the last Basic error that occurred (-1: no error).
See “BASIC Errors Codes” on page 59
The LSTERR is automatically cleared (value -1) when an end of section is reached (instruction END)
You can also write the value -1 on LSTERR to clear the error (SETSYS PRG,”LSTERR”,-1).

NBTAGS RO I Returns the number of tags defined in eWON.

SCHRST W I

Clear all pending scheduled actions (except the action currently ‘in progress’).
Write only with the value 1
SETSYS PRG,”SCHRST”,1
When Scheduled Actions are cleared, they have the status ‘Action Canceled’ (value 21613)

MDMRST W I
Force an Hardware Modem Reset
SETSYS PRG,"MDMRST",1

ADSLRST W I
Force an Hardware ADSL Modem Reset
SETSYS PRG,"ADSLRST",1

Table 10: PRG group fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 25

Programming Guide
• USER fields group:
The fields edited with this group are the one found in the config.txt file under the section UserList. The fields are described in the
section "Configuration fields".

See User Section on page 67.
• A block must be loaded for edition with the SETSYS command and a special field called "load". According to the source, this

block will be either the eWON system configuration, the eWON COM configuration, or one Tag configuration, or one user
configuration.

• Then each field of this configuration can be accessed by the GETSYS or SETSYS commands. This edition works on the record
loaded values but does not actually affect the configuration.

• When edition is finished, the SETSYS command is called with a special field called "save" and the edited block is saved (this
is only necessary if the record has changed). At that time the record edited content is checked and the configuration is
actually updated and applied.

• The CFGSAVE command can be called to actually save the updated configuration to flash.
• SETSYS TAG,”load”,XXXXXXX

The TAG load case is particular because is allows to load a Tag defined by its name, its ID or its Index.

If there are 6 Tags defined in the config, each Tag can be accessed by its index (0 to 5), its ID (the first item of a Tag definition when
reloading the config.txt file, the ID of a Tag is never reused during the live of a configuration until the eWON is formatted) or finally by its
name.

See also:
See Tag Access on page 10

• Recognized field values per group
The fields values are the same fields as those returned by the FTP get config.txt command.
Syntax

GETSYS SSS, S1
SETSYS SSS, S1, S2 / E2

• SSS is the source block: PRG, SYS, TAG, USR - This parameter must be typed as is (it could not be replaced by a string)!
• S1 is the field name you want to read or modify. S1 can be the action "load" or "save"
• S2 /E2 is the value to assign to the field, of which type depends on the field itself

Example:

See also:
“CFGSAVE” on page 13, “Configuration Fields” on page 60

Method XXX param Example Example explanation

Tag name access Tagname Setsys Tag,"load","MyTagName" Loads Tag with name MyTagName

Index access -Index Setsys Tag,"load",- 4 Loads Tag with index 4

TagId access Id Setsys Tag,"load",50 Loads Tag with id 50

Table 11: Setsys Tag,"load" examples

A% = GETSYS PRG, "TIMESEC"
REM Suppose Tag_1 exists and is memory Tag
SETSYS TAG,"load","Tag_1"
A$ = GETSYS TAG,"Name" : REM A$="Tag_1"
SETSYS TAG,"ETO","ewon_actl@ewon.biz" : REM EmailTo field of Tag_1
SETSYS TAG,"save" : REM save data in the config => update Tag_1
SETSYS TAG,"Name","Tag_2"
SETSYS TAG,"save" : REM update or create Tag_2 with Tag_1 cfg
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 26

Programming Guide
1.2.31.1 Extended syntax to access IOServer lists of parameters
Generic Syntax

GETSYS SYS,”ParamName:SubParamName”
SETSYS SYS,”ParamName:SubParamName”,”NewValue”

• ParamName is the name of the whole field (form the config.txt file).
• SubParamName is the sub-parameter (inside the ParamName) that you want to read or modify.
• NewValue is the value to assign to the field.

Specific IOServer Syntax
GETSYS SYS,”IOSrvData[IOServerName]:SubParamName”
SETSYS SYS,”IOSrvData[IOServerName]:SubParamName”,”NewValue”

• IOServerName is the name of the IOServer you want to edit (form the config.txt file).
• SubParamName is the sub-parameter (inside the IOSrvData[...]) that you want to read or modify.
• NewValue is the value to assign to the field.
Purpose:

Allows an easy access to sub-parameters contained in a parameter String (since firmware 5.6s2).
Previously, to modify the IOSrvData2 parameter from the example below, you have to handle the whole string.

Now, you can access directly the sub-parameter.
example with Generic Syntax:

example with SpecificIOServer Syntax:

1.2.32 GO
Syntax [Command]

GO

Purpose:
Start program execution (RUN). This is equivalent to clicking RUN in the script control window.
This command is mainly useful for remote eWON operation through the use of REMOTE.BAS FTP transfer.
See also:

“HALT” on page 28), (“REBOOT” on page 48)

SETSYS SYS,"load"
A$ = GETSYS SYS,"IOSrvData2:GlobAddrA"
SETSYS SYS,"IOSrvData2:GlobAddrA","0,254,0"

SETSYS SYS,"load"
A$ = GETSYS SYS,"IOSrvData[UNITE]:GlobAddrA"
SETSYS SYS,"IOSrvData[UNITE]:GlobAddrA","0,254,0"

...
IOSrv0:EWON
IOSrv1:MODBUS
IOSrv2:UNITE
IOSrv3:
IOSrv4:
IOSrv5:
IOSrv6:
IOSrv7:
IOSrv8:
IOSrv9:
IOSrvData0:MinInterval:10¶MaxInterval:268435455¶ReverseCount:0
IOSrvData1:ComPortNum:1
IOSrvData2:EnabledA:1¶PeriodA:1000¶GlobAddrA:0,254,0¶EnabledB:0¶EnabledC:0¶ComPortNum:1¶Baudrate:19200¶Parity:2¶HWMode:1¶TwoStop:
0¶UVER2:1¶DisDefTr:0
IOSrvData3:
IOSrvData4:
IOSrvData5:
IOSrvData6:
IOSrvData7:
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 27

Programming Guide
1.2.33 GOSUB RETURN
Syntax

GOSUB Label

Label:Expression

RETURN

Purpose:
When the GOSUB line is executed, the program continues at "Label" line. Then the program executes up to the RETURN line. The
RETURN command modifies the program pointer to the line immediately following the GOSUB Line.

IMPORTANT: if the gosub line contains instruction after the GOSUB command, they won't be executed on return.
It is possible to create a new section containing the Label. Sections are useful in order to divide the program into smaller code snippets
and help the reader to get a clear view of the software. At the end of every section there is an invisible END but jumps are possible from
section to section.
Example:

1.2.34 GOTO
Syntax [Command]

GOTO Label

Purpose:
The execution of the program continues to the line indicated by Label. The GOTO command also allows starting the program without
erasing all variables. The Label statement cannot be empty.
Example:

1.2.35 HALT
Syntax [Command]

HALT

Purpose:
Stops program execution. This is equivalent to clicking STOP’ in the script control window.
This command is mainly useful for remote eWON operation through the use of REMOTE.BAS FTP transfer.

See also:
“GO” on page 27, “REBOOT” on page 48

1.2.36 HEX$
Syntax [function]

HEX$ E1

Purpose:
The function returns a chain of 8 characters that represents the hexadecimal value of the E1 number.
Example:

See also:
“BIN$” on page 13

GOSUB NL3
PRINT " End "
END
NL3 : PRINT " Beginning "
RETURN
REM Display " Beginning " then " End "
GOSUB NL3 :print "Never"
PRINT " End "
END
NL3 : PRINT " Beginning "
RETURN
REM Display " Beginning " then " End " => "Never"
is never printed

GOTO Label
Print " Hop "
REM the program continues at line Label (Hop is not printed)
Label:

a$= HEX$ 255
REM A$ is worth " 000000FF " after this affectation
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 28

Programming Guide
1.2.37 IF THEN ELSE ENDIF
This sequence of commands now supports two different syntaxes: the short IF syntax and the long IF syntax.

1.2.37.1 Short IF Syntax
IF N THEN EXPRESSION1 [ELSE EXPRESSION2 [ENDIF]]

Purpose:
The condition is the result of an operation returning an N integer. If N is 0, the condition is considered as false and the eWON executes at
the following line or to the ELSE "expression2" if present. If N is different from 0, the condition is considered as true and the eWON
executes "expression1". If more than one instruction has to be executed, separate them with ':'. If N is an expression or a test, use ().
The ELSE Expresion2 is optional and the finishing ENDIF is also optional.

IMPORTANT the short IF syntax is used as soon as an item is found after the THEN statement. Even putting a REM
statement on the IF N THEN line will make the eWON consider it as a short IF statement.

1.2.37.2 Long IF syntax
IF N THEN

 Expression1

ELSE

 Expression2

ENDIF

The ELSE Expression2 is optional but ENDIF is mandatory.
You can mix short and long IF syntax in your code, but don't forget that anything typed after the THEN statement will lead to a short IF
syntax interpretation.
Example:

1.2.38 INSTR
Syntax [Function]

INSTR I1,S1,S2

• I1 is the index in the string to search (valid value goes from 1 to LEN S1)
• S1 is the string to be search for S2
• S2 is the string to search for in S1
Purpose:

The function returns an integer equal to the position of string S2 in string S1.
If string S2 is found, the function return a value from 1 to the length of S1 (The returned index is 1 based).
If string S2 is not contained in S1, the function returns 0.
The I1 parameter should be 1 to search the whole S1 string. If I1 is >0 then string S1 is searched starting at offset I1. The value returned
is still referenced to the beginning of S1, example:
INSTR 1, "AAABBC","BB" = 4 and INSTR 3, "AAABBC","BB" = 4 also.

note: As internally, the INSTR function uses the character zero (0x00) as delimiter, you cannot search for character zero with INSTR.
 B$=CHR$(0) : A% = INSTR 1,A$,B$ will always return 1, whichever a zero character is present or not.

1.2.39 INT
Syntax [function]

INT F1

Purpose:

Extract the integer part of the number. There is no rounding operation.

Example 1:

Example 2:

IF (a<10) THEN PRINT"A is lower than 10": SETIO"MyTag",1
IF (a<10) THEN
PRINT"A is lower than 10": MyTag@=1
ELSE
 PRINT"A is bigger than 10": MyTag@=0
ENDIF

A = INT(10.95)
REM A equals 10.00

A% = 10.95
REM A equals 10 --- automatic type conversion
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 29

Programming Guide
1.2.40 IOMOD
Syntax [function]

IOMOD TagRef

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
Purpose:

Returns '1' if the TagRef Tag value has been modified in the eWON since the last call to the IOMOD command. The call to this function
resets Tag change internal flag to 0. i.e. if the variable doesn't change anymore, the next call to IOMOD will return 0. You can achieve an
equivalent behavior with the use of ONCHANGE event handler.

Example:

See also:
“ONCHANGE” on page 34

1.2.41 IORCV
Syntax [function]
IORCV S1

or
IORCV S1, I1
• S1 is the STRING IOServerName
• I1 is an additional parameter (= 0 OR = 1 OR = -1)
Purpose:

The IOSEND and IORCV functions must be used together. They are used to send/receive custom IOServer requests.
These functions can only be used if IOServer is configured.
Use IORCV function for reading IO server response to an IOSEND request.

Note:
There are three transmission slots available, using IORCV allows you to free them before the three slots are busy.
Requests are interlaced with gateway requests sent to the IO server and with normal IO server polling operations.

• First case:

Returns the result or the status of the Request.
a% holds the request number and is the result of the IOSEND command.

If the request is done (all cases except “#RUN”), the slot is always freed after the “IORCV a%” or “IORCV a%,0”.

• Second case:

Same as for “a$=IORCV a%,0”, but the slot is not freed if a request is done.

• Third case:

Returns the status of the IORCV command in INTEGER format.
The slot is not freed by this parameter.
The returned status can contain the following values:

a% = IOMOD " MYTAG "
IF a% THEN PRINT " mytag has changed "

a$ = IORCV a%
a$ = IORCV a%,0

a$=”XXXXXXXXX” where XXXXXXXXX is the result of the request

a$="#FREE" slot a% is free

a$="#RUN" slot a% is in progress

a$="#ERR" slot a% is done with error

a$ = IORCV a%,-1

b% = IORCV a%,1

b%= -2 slot a% is free

b%= -1 slot a% is in progress

b%= 0 slot a% is done with success

b% > 0 slot a% is done with error

b% < -2
slot a% is done with error - code type: warning. Such warning codes mean “Read failed”
on the serial link. These warnings are flagged as internal and thus are not added in the
event log. The warning codes can be very long; ie. -536893114
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 30

Programming Guide
Example:

See also:
“IOSEND” on page 31

1.2.42 IOSEND
Syntax [function]

IOSEND S1, S2, S3

Purpose:
Sends a request by using the IO server's protocol.
See “IORCV” on page 30 for an example of how this function must be used.
Parameters are:

• STRING IOServerName: IO Server name as it appears in the Tag configuration page
• STRING Address: Slave address as described in the eWON User manual for each IO server section
• STRING IoCommand: Array of bytes with a protocol command, the content depends on the IO server.

Returns a request number (slot) that must be used in IORCV for reading the response to the request.

Note:
The request result is read by using the IORCV function and uses a polling mechanism. That means that you need to use
IORCV in order to check with the request received with IOSEND that the slot is free. There are three transmission slots
available, using IORCV allows you to free them before the three slots are busy.
Requests are interlaced with gateway requests sent to the IO server and with normal IO server polling operations.

Example:

See also:
“IORCV” on page 30

1.2.43 LEN
Syntax [function]

LEN S1

Purpose:
The function returns the number of characters in a string.
Example:

TestIO:
 A$ = chr$(4)+chr$(0)+chr$(0)+chr$(0)+chr$(1) : rem create modbus command
 rem initiate the modbus request on slave 21
 a% = IOSEND "MODBUS","21",A$

Wait_IO_End:
 b% = IORCV a%,1 : rem read the status
 IF b%=-1 THEN
 GOTO Wait_IO_End : rem if idle then loop
 ENDIF

 B$ = IORCV a% : rem read the result and free the slot
 PRINT LEN(B$)
 PRINT B$
END

a% = IOSEND IOServerName,Address,IoCommand

a$= "Hop "
A% = LEN A$
REM a% equal 3
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 31

Programming Guide
1.2.44 LOGEVENT
Syntax [command]

LOGEVENT S1 [,S2]

• S1 is the phrase to log
• S2 is the type of logging. This parameter is optional and can take the following ranges of values:

If the logging level is not specified, it is considered to be an error.
Purpose:

Appends an event to the log file. The current time is automatically used for event logging.
Example:

1.2.45 LOGIO
Syntax [command]

LOGIO TagRef

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
Purpose:

Force historical logging of TagRef Tag.
The Tag must have historical logging enabled (Warning: not available on all eWON’s versions).
The point is logged at the time the LOGIO command is issued with its current value.
Note: If the Tag is configured for historical logging with logging dead band equal to –1 and time interval equal to 0, no point will be logged
automatically and it is possible to program a purely scripted logging.
Example:

1.2.46 LTRIM
Syntax[Command]

LTRIM S1

• S1 is a string.
Purpose:

LTRIM returns a copy of a string with the leftmost spaces removed.
Example:

See also:
“RTRIM” on page 48

Range of values Description

0 .. 99 Error

-99 .. -1 Warning

100 .. 199 Trace

Table 12: LOGEVENT - ranges of values

logevent "Save this in log", 120
REM Would append 978353046;"01/01/2001 12:44:06";"Save this in log" to the
log file.

LOGIO "mytag"

b$ = LTRIM a$
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 32

Programming Guide
1.2.47 MOD
Syntax [Operator]

E1 MOD E2

Purpose:
Compute the remainder of the division of E1 by E2
Example:

See also:
“Operators priority” on page 8

1.2.48 MONTH
Syntax [Function]

MONTH E1

• E1 is a date in integer format (number of seconds since 1/1/1970)
• S1 is a date in String format ("18/09/2003 15:45:30")
Purpose:

This function returns an integer corresponding to the value of the month (1--12) that matches a defined time variable.
Warning: Do not call the function with a float variable of value (or this would result to error "invalid parameter").

Example 1:

Example 2:

See also:
“DAY” on page 14, “DOW” on page 15, “DOY” on page 16, “WOY” on page 58

1.2.49 NOT
Syntax [function]

NOT E1

Purpose:
The function returns '1' if E1 is equal to '0' otherwise the function returns 0.
Example:

See also:
“Operators priority” on page 8

1.2.50 NTPSync
Syntax [function]

NtpSync

Purpose:
Posts a request for clock resynchronization (even if this feature is disabled in the configuration).

1.2.51 ONxxxxxx
There are some ONxxxxxx commands listed below. These commands are used to register a BASIC action to perform in case of special
conditions. For every ONxxxxx command, the action to execute is a string that is used as a BASIC command line. When the condition
occurs, the command is queued in an execution queue and is executed when its turn comes. These functions are:

1 MOD 2
REM returns 1
2 MOD 2
REM returns 0

a$ = TIME$
a% = MONTH a$

b% = getsys prg,"TIMESEC"
a% = MONTH b%

IF NOT a% THEN PRINT " A% is worth 0 "

ONxxxx command Description

ONTIMER Executed when one of the timers expires

Table 13: the various “ONXXXX” functions
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 33

Programming Guide
When the command line programmed is executed, a special parameter is set in SETSYS PRG,"EVTINFO". The value of the parameter
depends on the ONxxxxxx function and it can be checked with the GETSYS command.

Warning:
For all ONxxxx command, if the last parameter is omitted, the action is canceled.

Example:

See also:
“GETSYS, SETSYS” on page 24, ONxxxxx (following chapters)

1.2.52 ONALARM
Syntax [command]

ONALARM TagRef,S2

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
• S2 is the command line to execute in case of alarm state change.
Purpose:

Executes the S2 command line when alarm state on TagRef Tag changes. The EVTINFO parameter (see GETSYS page 24) is set to the
Tag ID when command is called.
Note: ONALARM will execute the command when the alarm status gets the value "2" (or above), that means that ONALARM DOES NOT
DETECT the "pre trigger" status (value=1).
Example:

See also:
“ALSTAT” on page 12, “GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “ONCHANGE” on page 34

1.2.53 ONCHANGE
Syntax [command]

ONCHANGE TagRef,S2

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
• S2 is the command line to execute in case of value change.
Purpose:

Executes S2 command line when the TagRef Tag changes (value or configuration).
The EVTINFO parameter (see “GETSYS, SETSYS” on page 24) is set to the Tag ID when command is called.
Example:

Note: The ONCHANGE is triggered when:
- the value of the Tag changes
- the configuration of the tag is updated.

The IOMOD function returns true only when a value changes.

See also:
“IOMOD” on page 30, “GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33

ONCHANGE Executed when a Tag changes (value or configuration)

ONALARM Executed when a Tag alarm state changes

ONERROR Executed when an error occurs during BASIC execution

ONSTATUS Executed when a scheduled action is finished (success or failure)

ONSMS Executed when a SMS is received (only for eWON with GSM/GPRS Modem)

ONPPP Executed when the PPP connection goes online or offline

ONVPN Executed when the VPN goes connected or disconnected

ONWAN Executed when the WAN goes connected or disconnected

ONTIMER 1
REM will cancel any action programmed on TIMER 1.

ONALARM "MyTag","goto MyTagAlarm"

ONCHANGE "MyTag","goto MyTagChange"

Table 13: the various “ONXXXX” functions
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 34

Programming Guide
1.2.54 ONDATE
Syntax [command]

ONDATE I1,S1,S2

• I1 is the planner entry index to set (from 1 to 10).
• S1 is the Timer Interval string.
• S2 is the Basic command(s) to execute at the specified interval.

ONDATE I1

• I1 is the planner entry index to delete (from 1 to 10).
Purpose:

The ONDATE function allows you to defined 10 plannified tasks.
Available since Firmware 5.7.
All ONDATE entries are deleted automatically when the program is stopped by the RUN/STOP link.

1.2.54.1 Timer Interval settings
The syntax of the S2 parameter is the following: mm hh dd MMM DDD

Table 14: ONDATE: Timer Interval syntax

Important: These 5 parameters are all required!
When used together, the dd and DDD parameters make an OR operation (every dd of the month or DDD).

In addition, there are some operators to specify multiple date/time.

Table 15: ONDATE: Timer Interval Operators

Field Settings

mm This is the Minute parameter.
A number between 0 to 59

hh This is the Hour parameter.
A number between 0 to 23

dd This is the Day parameter.
A number between 1 to 31

MMM
This is the Month parameter.
A number between 1 to 12
Or the month name abbreviation in english (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec)

DDD
This is the Day Of Week parameter.
A number between 1 to 7 with 1=monday, 2=tuesday, ..., 7=sunday
Or the day name abreviation in english (mon, tue, wed, thu, fri, sat, sun)

Operator Description

* The * (asterisk) operator specifies all possible values for a field from Table 14.
For example, an * in the hh time field would be equivalent to 'every hour'.

, The , (comma) operator specifies a list of values, for example: "1,3,4,7,8" (space inside the list must
not be used)

- The - (dash) operator specifies a range of values, for example: "1-6", which is equivalent to
"1,2,3,4,5,6".

/ The / (slash) operator (called "step"), which can be used to skip a given number of values.
For example, "*/3" in the hour time field is equivalent to "0,3,6,9,12,15,18,21".
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 35

Programming Guide
Examples:

Table 16: Task Planner: Timer examples

See also:
“TSET” on page 56, “ONTIMER” on page 38

1.2.55 ONERROR
Syntax [command]

ONERROR S1

• S1 is the command line to execute when an error occurs during program execution.
Purpose:

The EVTINFO parameter (See GETSYS, SETSYS on page 24) is set to the code of the error.
Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33

Example Meaning

ONDATE 1,"* * * * *","GOTO MyFunc" will do "GOTO MyFunc" every minutes.

ONDATE 1,"0 * * * *","GOTO MyFunc" will do "GOTO MyFunc" every hour.

ONDATE 1,"0 0 * * *","GOTO MyFunc" will do "GOTO MyFunc" on every day at midnight (00:00).

ONDATE 1,"*/15 * * * *","GOTO MyFunc" will do "GOTO MyFunc" every 15 minutes.

ONDATE 1,"15 7 1 1 *","GOTO MyFunc"
will do "GOTO MyFunc" at 7:15, the first of january.
Could be written also as ’15 7 1 jan *’

ONDATE 1,"15 8 * * 1","GOTO MyFunc"
will do "GOTO MyFunc" at 8:15, each monday.
Could be written also as ’15 8 * * mon’

ONDATE 1,"0 8-18 * * 1-5","GOTO MyFunc"
will do "GOTO MyFunc" at every hour between 8:00 and 18:00 on
every working day (monday to friday)

ONDATE 1,"0 6,7,18,19 * * *","GOTO MyFunc" will do "GOTO MyFunc" at 6, 7, 18 and 19 o’clock on every day.

ONDATE 1,"* * 13 * fri","GOTO MyFunc"
will do "GOTO MyFunc" at every minutes on each friday OR the 13th
of the month (and not only on the friday 13th).

ONDATE 1 will delete the plannified entry 1

ONERROR "goto TrapError"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 36

Programming Guide
1.2.56 ONPPP
Syntax [command]

ONPPP S1

• S1 is the command line to execute when the PPP connection goes online or offline.
Purpose:

The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33

1.2.57 ONSMS
Syntax [command]

ONSMS S1

• S1 is the command line to execute when eWON receives a SMS.
Purpose:

A typical use of the ONSMS syntax is allowing eWON to send a read SMS receipt to the SMS sender.

You can read the received SMS with GETSYS PRG function with:
• smsRead:

hold 1 if there is a new SMS (reading smsRead load the other parameters)
hold 0 if the SMS queue is empty

• smsFrom:
String holding the phone number of the sender

• smsDate:
String holding the Date of SMS reception

• smsMsg:
String holding the SMS message

Example:

EVTINFO Value Situation
1 The PPP connection has gone ONLINE
2 The PPP has gone OFFLINE

Table 17: ONPPP - EVTINFO values

ONPPP "goto PppAction"
END
PppAction:
I%=GETSYS PRG,"EVTINFO"
IF I%=1 then
PRINT "Online with address";GETSYS PRG,"PPPIP"
ELSE
PRINT "PPP Going offline"
ENDIF
END

InitSection:
ONSMS "Goto HSms"
HSms:
a% = getsys prg,"SmsRead"
if (a%<>0) then
s% = s%+1
print "SMS Nr: ";s%
f$ = getsys prg,"smsfrom"
print "From: ";f$
print getsys prg,"smsdate"
a$ = getsys prg,"smsmsg"
print "Message: ";a$
b$ = f$+",gsm,0"
c$ = "Received message: "+a$
sendsms b$,c$
goto HSms
endif
end
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 37

Programming Guide
1.2.58 ONSTATUS
Syntax [command]

ONSTATUS S1

• S1 is the command line to execute when a scheduled action is finished.
Purpose:

The EVTINFO parameter (see GETSYS page 24) is set to the ACTIONID of the finished action when command is called. This function
can be used to track success or failure of scheduled actions.

Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “PUTFTP” on page 46, “SENDMAIL” on page 49, “SENDSMS” on
page 49, “SENDTRAP” on page 50

1.2.59 ONTIMER
Syntax [command]

ONTIMER E1,S1

• E1 is the timer number (see TSET page 56)
• S1 is the command line to execute when timer expires.
Purpose:

Executes S1 command line when E1 expires.
The EVTINFO parameter (see GETSYS page 24) is set to the timer number when command is called.
Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “TSET” on page 56

1.2.60 ONVPN
Syntax [command]

ONVPN S1

• S1 is the command line to execute when the VPN connection status change (at connection or at disconnection).
Purpose:

The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33

ONSTATUS "goto Status"

ONTIMER 1,"goto Timer1"
ONTIMER 1, "LOGIO ‘mytag’ "

EVTINFO Value Situation
1 The VPN connection has gone ONLINE
2 The VPN has gone OFFLINE

Table 18: ONVPN - EVTINFO values

ONVPN "goto VPN_Action"
END
VPN_Action:
 I%=GETSYS PRG,"EVTINFO"
 IF I%=1 then
 PRINT "VPN Online"
 ELSE
 PRINT "VPN Going offline"
 ENDIF
END
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 38

Programming Guide
1.2.61 ONWAN
Syntax [command]

ONWAN S1

• S1 is the command line to execute when the WAN connection status change (at connection or at disconnection).
Purpose:

The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33

EVTINFO Value Situation
1 The WAN connection has gone ONLINE
2 The WAN has gone OFFLINE

Table 19: ONWAN - EVTINFO values

ONWAN "goto WAN_Action"
END
WAN_Action:
 I%=GETSYS PRG,"EVTINFO"
 IF I%=1 then
 PRINT "WAN Online with address";GETSYS PRG,"WANIP"
 ELSE
 PRINT "WAN Going offline"
 ENDIF
END
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 39

Programming Guide
1.2.62 OPEN

1.2.62.1 Introduction to file management
Files accessed in BASIC can be of 4 different types:

• Files from the /usr directory
• Serial communication link
• TCP or UDP socket
• Export Block Descriptor

1.2.62.2 OPEN general syntax
There are two different modes of operation for the file access:

• BINARY mode: file is read by blocks of bytes
• TEXT mode: files are read or written as CSV files

See the “GET” on page 21 and “PUT” on page 44 commands for a detailed difference between the BINARY and TEXT mode
outputs.

There are 3 operation types:

When binary mode is used, the data written to the file are strings of characters that are considered as stream of bytes. The GET
command returns the amount of bytes requested.
When Text mode is used, the operation is completely different: the PUT operation is more like a PRINT command directed to file, the data
are formatted as text, and each data is separated by a ‘;’ in the output file (strings are exported between quotes). The GET command
works like a READ command, the file is read sequentially and each GET returns one of the ‘;’ separated element, the type of the data
returned depends on the type of data read.
In both modes, files are read sequentially until end of file is reached. End of file can be tested with the EOF function.
The eWON user flash file system allows up to 8 files to be simultaneously opened for read (even twice the same file), and 1 file opened
for write. If a file is opened for read it cannot be opened for write at the same time (and vice versa).

Running the program will close any previously opened files (not GOTO).

Parameter
value Description

INPUT The file must exist. It is opened for a read only operation. The file pointer is set to the beginning of the file

OUTPUT The Path must exist. If the file exists it is erased first. The file is opened for write only operation

APPEND
The Path must exist. The file must not exist. If the file does not exist, it is created (like with OUTPUT type), if
the file exists, it is opened and the write pointer is located at the end of the file. The file is opened for write only
operation

Table 20: OPEN read and write operations parameters
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 40

Programming Guide
1.2.62.3 Different File/stream types

1.2.62.3.1 FILE open /usr
Syntax [command]

OPEN S1 FOR BINARY|TEXT INPUT|OUTPUT|APPEND AS E1

E1 is the file number. After the OPEN operation, the file is referenced by its file number and not by its file name. There are 8 file numbers
available. Once a file number is assigned to a file, it is allocated to that file, until the CLOSE command is issued.
S1 describes the access to a file that is located on eWON directories. S1 must respect the following syntax:
• "file:/directory/filename"

This allows to read or write files in the /usr directories. You will not be able to access the files in the root (virtual files like config.txt) with
this command.

• If S1 does not begin by "file:", "tcp", "com", or "exp", then the file will be considered as being part of the /usr directory.

This syntax was the old (ver 3) syntax and is kept for compatibility purpose.

1.2.62.3.2 TCP or UDP stream open Syntax [command]
OPEN S1 FOR BINARY INPUT|OUTPUT AS E1

Note: This command works only with BINARY

S1 must respect the following syntax:

 “tcp:Address:dest_Port[,TimeOut]”
 “udp:Address:dest_Port[:src_Port][,TimeOut]”

Address can be a dotted IP address like 10.0.0.1 or a valid resolvable internet name like ftp.ewon.be

dest_Port must be a valid port number from 1 to 65535.

src_Port (optional) If defined, the return port will be forced to the src_Port value (works only with UDP protocol).
If not defined, the return port is allocated automatically by the eWON TCP/IP stack.

TimeOut (optional) is the number of seconds eWON will wait to decide if the OPEN command failed (default : 75 sec)

E1 is the file number. After the OPEN operation, the file is referenced by its file number and not by its file name. There are 8 file numbers
available. Once a file number is assigned to a file, it is allocated to that file, until the CLOSE command is issued.

WARNING - scheduled action: when the OPEN command is used to open a TCP connection, the command returns before
the connection is actually opened. A scheduled action is posted because opening the socket may require a dial out or take
up to more than a minute, and the BASIC cannot be stopped during that time.

In order to know if the connection is established, the user has 2 options:
• Check the scheduled action status by checking the PRG,ACTIONSTAT (See GETSYS, SETSYS on page 24).
• Read the file with GET: as long as the file is not actually opened, the function returns #CLOSED#. When the function stops

sending #CLOSED# the file can be read and written for socket operations.
Example:

Example Comment

OPEN "file:/sys/test.dat" FOR BINARY INPUT AS 1
A$=GET 1,4
CLOSE 1

Opens file 1
Reads 4 bytes

Example Comment

OPEN "test.dat" FOR BINARY INPUT AS 1
A$=GET 1,4
CLOSE 1

Open the /usr/test.dat file
Reads 4 bytes

Example Comment

OPEN "tcp:10.0.0.1:25" FOR BINARY OUTPUT AS 1
PUT 1,CHR$(13)+CHR$(10)
A$=GET 1
CLOSE 1

Opens socket to 10.0.0.1 port 25 for
read/write access.
Write a CRLF then read response.
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 41

Programming Guide
1.2.62.3.3 COM port open Syntax [command]
OPEN S1 FOR BINARY INPUT|OUTPUT AS E1

Note: This command works only with BINARY.
Both INPUT and OUTPUT modes allow to both Read and Write on the COM port.

S1 will be as follows:

"com:n,b,dpsh"

• where n is 1 to 4 (the port number, 1 is Front panel serial port, 2 is Modem Port)
• where b is the baud rate
• where d is the number of bits "7" or "8"
• where p is the parity: "e","o" or "n"
• where s is the number of stop bit "1" or "2"
• where h is the handshaking "h": half duplex, "r": yes Rts/Cts, "n": No
This command will open the serial port to port 1 to 4 with the given line parameters.

E1 is the file number. After the OPEN operation, the file is referenced by its file number and not by its file name. There are 8 file numbers
available. Once a file number is assigned to a file it is allocated to that file until the CLOSE command is issued.

REM: Attempting to USE a serial port used by an IO server is not allowed and returns an error.
Example:

1.2.62.3.4 EXP export bloc descriptor open Syntax [command]
OPEN S1 FOR TEXT|BINARY INPUT AS E1

Note: This command works only with INPUT
S1 will be as follows: "exp:XXXXX", where XXXXX is an Export Block Descriptor.
E1 is the file number. After the OPEN operation, the file is referenced by its file number and not by its file name. There are 8 file numbers
available. Once a file number is assigned to a file it is allocated to that file until the CLOSE command is issued.
When the export block has been read (or not if you close before end) you must call CLOSE to release memory.

 Warning: You cannot use the PUT command with a EXP: file
Example 1:

In that case the "a$ = get 1" can be called until it returns an empty string to read the content of the Export Block Descriptor; the data are
then read by blocks of maximum 2048 bytes. If you want to reduce or increase that size, you can call "a$ = get 1,y", where y is the
maximum number of bytes you want the function to return (do not put y=0).

Example 2:

See also:
“CLOSE” on page 14, “EOF” on page 17, “GET” on page 21, “PUT” on page 44

Example Comment

OPEN "com:1,9600,8n1n" FOR BINARY OUTPUT AS 3

Opens the COM1 (Serial port 1) with
parameters: speed 9600, bit 8,
parity none, stop bit 1 and
handshaking no.
The file number uses is 3.
You are in Binary mode and you can
read and write.

OPEN "exp:$dtAR $ftT" FOR TEXT INPUT AS 1
Loop:
A$ = Get 1
PRINT A$
If A$ <>"" then GOTO Loop
CLOSE 1

OPEN "exp:$dtUF $ftT $fn/myfile.txt" FOR TEXT INPUT AS
1
A$ = Get 1
PRINT A$
CLOSE 1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 42

Programming Guide
1.2.63 OR
Syntax [Operator]

E1 OR E2

Purpose:
Does a bit-by-bit OR between the 2 integers E1 and E2.

WARNINGS:
• When executed on float elements (float constant or float variable), the OR functions returns the logical OR operation.
• When executed on integer elements (integer constant or integer variable - like i%), the OR function returns the bitwise OR

operation
• This is NOT true for AND and XOR
• This is historical and is left for compatibility with existing programs

Examples:

• Logical OR:

See also:
“Operators priority” on page 8, “AND” on page 12, “XOR” on page 58

1.2.64 PI
Syntax [function]

PI

Purpose:

The function returns 3.14159265

1.2.65 PRINT - AT
Syntax [Command]

PRINT CA
This command displays the text CA followed by a new line.
PRINT CA;
This command displays the text CA without a new line.
PRINT AT E1, E2 CA
This command displays the text CA at the E1 column and at the E2 line.
PRINT CA1;CA2[;CA3...]
Display the CA1, CA2 text etc. one following the other (don't pass to next line).

Purpose:
The eWON has a virtual "screen" that can be used in order to inspect the content of values while the program is running, or in order to
debug an expression…
Example:

See also:
“CLS” on page 14

1 OR 2 REM returns 3

2 OR 2 REM returns 2

3 OR 1 REM returns 3

var1=0.0
var2=0.0
ORResult = var1 OR var2
Print ORresult
rem ORResult = 0.0

var1=0.0
var2=12.0
OR Result = var1 OR var2
Print ORresult
rem ORResult = 1.0

PRINT " HOP1 "; HOP2 "
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 43

Programming Guide
1.2.66 PRINT #
Syntax [Command]

PRINT #x,CA
With x defined as follows:

CA is described in the PRINT description above.

Purpose:
The PRINT command sends output to the virtual screen. With the PRINT # command, output can be routed to another destination.
When running ASP code, the print command can be used to build the content of the page sent to the user. If you print to Web page, the
Print command add a "
" at the end of line to pass to the next line.
If you don't want to pass to next line, you need to add a ";" (semicolon) at your Print. Example:
PRINT A$;

Example:

1.2.67 PUT
The put command works completely differently if the file is opened in Binary mode or in Text mode. The file must be opened for OUTPUT
or for APPEND operation (APPEND for /usr files only).

• COM, TCP-UDP, /usr
The file syntax has been extended in version 3 of the eWON to allow access to the serial port and to TCP and UDP socket.
The command description describes operation for /usr (Text and Binary modes), COM (always binary) and TCP-UDP (always binary)

1.2.67.1 File Syntax[Command] – Binary mode
PUT E1, S1[;S2…]

• E1 is file number (1-8)
• S1 is the string of char to append to the file. The number of bytes written depends on the length of the string.
• S2…: (optional) additional data to write
Important: the delimiter between the file number and the first item is a ‘,’ but the separator between the first item and the
optional next item is a ‘;’. This is close to the PRINT syntax.
The length of a BASIC line limits the number of items.

Example:

Value Description

0 User's WEB page

1 Virtual screen

Table 21: valid values for print redirection

PRINT #0,A$ REM sends A$ to the user's web page
PRINT #1,A$ REM works like PRINT A$ by sending to the virtual screen.

OPEN "/myfile.bin" FOR BINARY OUTPUT AS 1
PUT 1,"ABCDEF";"GHIJKLMN"
CLOSE 1
REM Now reopens and append
OPEN "/myfile.bin" FOR BINARY APPEND AS 1
PUT 1,"OPQRSTUVWXYZ"
CLOSE 1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 44

Programming Guide
1.2.67.2 File Syntax[Command] – Text mode
PUT E1, V1[;V2…][;]

• E1 is file number (1-8)
• V1 is an element of type STRING, INTEGER or FLOAT
• V2…optional: additional data to write (STRING, INTEGER or FLOAT)
The data are converted to text before being written to file. If data is of STRING type it is written between quotes ("), otherwise not.
A ‘;’ is inserted between each data written to the file.
If the PUT command line ends with a ‘;’, the sequence of data can continue on another BASIC line. If the PUT command line ends
without the ‘;’ character, the line is considered as finished and a CRLF (CHR$(13)+CHR$(10)) is added at the end of the file.

Example:

Produces this file:

123;"ABC";"DEF"
345.7;"YYY";"ZZZ"

REM: there is a CRLF at the end of the last line, PUT 1,345.7;"YYY";"ZZZ"; would avoid that.

1.2.67.3 COM Syntax[Command] – Binary mode
PUT 1, S1

• S1: string of data to write to serial port.
Purpose:

Writes the S1 string to the serial port. The function returns only after all the data have been actually sent.

Warnings:
• The string can contain any byte by using the CHR$ function.
• Serial port cannot be used by an IO server in the same time, or it would result to a “IO Error”.

1.2.67.4 TCP/UDP Syntax[Command] – Binary mode
PUT E1, S1

• E1: is the file number returned by the OPEN function.
• S1: string of data to write to the socket.
Purpose:

Writes the S1 string to the socket
The function returns only after all the data have been actually transferred to the stack.

Warnings:
• The socket must be opened. The OPEN command returns immediately but generates a scheduled action. The PUT

command will generate an IO error until the socket is actually opened (See OPEN on page 40).
• When data are transferred to the TCP/IP stack, it does not mean that the data have been received by the socket end point.

It may take minutes before the data are considered as undeliverable and the socket is put in error mode.
• The string can contain any byte by using the CHR$ function.

See also:
“CLOSE” on page 14, “EOF” on page 17, “GET” on page 21, “OPEN” on page 40.

OPEN "/myfile.txt" FOR TEXT OUTPUT AS 1
PUT 1,123;"ABC";
PUT 1,"DEF"
PUT 1,345.7;"YYY";"ZZZ"
CLOSE 1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 45

Programming Guide
1.2.68 PUTFTP
Syntax[command]

PUTFTP S1,S2 [,S3]

• S1 is the destination file name (to write on the FTPServer)
• S2 is the file content (String)

This content may be an EXPORT_BLOCK_DESCRIPTOR content.
See also chapter “Export block descriptor” in the General User Guide.

• S3 (optional) is the FTP server connection parameters.
If S3 is unused, the FTPServer parameters from the General config page will be used.

Purpose:

Put a file on a FTP server, content of the file is either a string or an Export_Bloc_Descriptor.

The S3 parameters is as follow:
[user:password@]servername[:port][,option1]

The option1 parameters is to force PassiveMode, put a value 1 as option1 parameter.
If omitted, option1=0, then eWON will connect in ActiveMode.

This command posts a scheduled action request for a PUTFTP generation.

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled action and allows tracking this action. It is also
possible to program an ONSTATUS action that will be called when the action is finished (with or without success).

Examples:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “ONSTATUS” on page 38.

REM Post a file containing a custom text
PUTFTP "/ewon1/MyFile.txt","this is the text of the file"

REM Post a file containing the event log
PUTFTP "/ewon1/events.txt","[$dtEV]"

REM Post on a defined FTP server, a file with the Histo logging of Temperature tag
PUTFTP "/ewon1/Temperature.txt","[dtHLftTtnTemperature]","user:pwd@FTPserver.com"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 46

Programming Guide

"

1.2.69 PUTHTTP
Syntax [Command]

PUTHTTP S1,S2,S3,S4,S5 [,S6]

• S1: Connexion Parameter with the format [User:Password@]ServerName[:Port]
• S2: URI of the action (absolute path of the request URI)
• S3: Text fields with the format [FieldName1=ValueName1][&FieldNameX=ValueNameX]*
• S4: File fields with the format

[FieldName1=ExportBlockDescriptor1][&FieldNameX=ExportBlockDescriptorX]*
• S5: Error String
• S6 (Optional): "PROXY"

Notes:
• In the preceding syntax description the square brackets are used to define an optional section for a given parameter.

The * is used to indicate that the preceding optional section may be repeated 0 to n times.
• All the parameters are mandatory. If you don't need to post Text fields, just write an empty string for the S3 parameter
• The HTTP Server response sent back will be checked against the Error String. If the Response contains the Error String the

command will finish without success.
• Spaces in Text fields and File fields strings are not allowed except inside export block descriptors (inside the EBD brackets).
• One fieldname=valuename section in the text field parameter may not exceed 7500 bytes (Otherwise action will finish without

success). This limitation does not apply for the file fields.

Purpose:
The PUTHTTP command submit an HTTP form to a Web server (like you do when you answer a Web form).
The submitted forms may contain text fields and file fields.
The HTTP method used is the POST method (multipart/form-data). Content Type of the file fields is always application/octet-stream.
Files to upload are defined using the Export Block descriptor syntax (See also Export Block descriptor section in the eWON reference
guide).
When the function returns, the GETSYS PRG, returns the ID of the scheduled action and allows tracking of this action.
It is also possible to program an ONSTATUS action that will be called when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the eWON will perform the PUTHTTP through a Proxy server. The eWON will use
the Proxy server parameters configured in System Setup / Communication / VPN Global.

Important: The posting method used (chunked packets) is only correctly handled on IIS 6.0 and Apache Webservers.
Posting on IIS 5 doesn’t work (Windows XP). Chuncked packets are not applied when the "PROXY" parameter is used
because most Proxy servers do not accept them. If PUTHTTP is used with the "PROXY" parameter, then eWON creates
a temporary file named "puthttp.proxy" in the /usr directory to store the data locally before sending it towards the server
via the Proxy.

Examples:

• Textfields form without HTTP basic authentfication:

When file fields are not needed an empty string is used for parameter S4.
When no port is specified HTPP port 80 is used.

• Text fields with basic authentification and configured HTTP port:

HTTP server is supposed to listen on port 89 at address www.ewon.biz
adm1 is used as login and adm2 is used as password.

• Text fields + file fields:

$fn (file name) directive is optional but when not used $dtCF will be used as destination file name
• Textfields form without HTTP basic authentfication through a Proxy server:

See also:
“ONSTATUS” on page 38, “GETSYS, SETSYS” on page 24, “GETHTTP” on page 23,
 see Export Block Descriptor on General Reference Manual

PUTHTTP "10.0.5.33","/textfields.php","firstname=jack&lastname=nicholson","","failed"

PUTHTTP "adm1:adm2@www.ewon.biz:89","/textfields.php","fname=jack&lname=nicholson","","failed

PUTHTTP "10.0.5.33", "/upload.php","firstname=bob&lastname=nicholson",
"pictures[]=[$dtEV $fnevents.txt]&pictures[]=[$dt CF$fnconfig.txt]","failed"

PUTHTTP "10.0.5.33","/
textfields.php","firstname=jack&lastname=nicholson","","failed","PROXY"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 47

Programming Guide
1.2.70 REBOOT
Syntax [Command]

REBOOT

Purpose:

This Basic keyword provides a very easy way to reboot eWON.

A typical use of this command is by simply entering it into a file you name "remote.bas" then saving locally and uploading this file on the
eWON FTP site to replace the existing remote.bas file. eWON then directly reboots.

1.2.71 REM
Syntax [command]

REM free text

Purpose:
This command enables the insertion of a line of comment in the program. The interpreter does not consider the line.
Example:

1.2.72 RENAME
Syntax [Command]

RENAME S1,S2

• S1, S2 are string.
Purpose:

Change the name of file S1 to S2. The command only works in the “/usr” directory.
Omitting "/usr/" before the filename will result to a I/O error.
The file and directory names are case sensitive.
The directory must exist before the call of the function. There is no automatic directory creation.
Example:

See also:
“ERASE” on page 17

1.2.73 RTRIM
Syntax[Command]

RTRIM S1

• S1 is a string.
Purpose:

RTRIM returns a copy of a string with the rightmost spaces removed.
Example:

See also:
“LTRIM” on page 32

PRINT a%
REM we can put whatever comment we want here
a%=2: REM Set a% to 2

RENAME "/usr/OldName.txt","/usr/NewName.txt"

b$ = RTRIM a$
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 48

Programming Guide
1.2.74 SENDMAIL
Syntax[command]

SENDMAIL S1,S2,S3,S4

• S1 is the E-mail address of the recipients (TO). Multiple recipients can be entered separated by ‘;’.
• S2 is the E-mail address of the recipient Carbon Copies (CC). Multiple recipients can be entered separated by ‘;’.
• S3 is the subject of the message.
• S4 is the content of the message.
Purpose:

This command posts a scheduled action request for an Email generation. When the function returns, the GETSYS PRG,"ACTIONID"
returns the ID of the scheduled action and allows tracking this action. It is also possible to program an ONSTATUS action that will be
called when the action is finished (with or without success). The S4 message content follows a special syntax that allows sending
attachments and inserting Export data inside the content itself (See also chapter “Export block descriptor” in the General User Guide).
The content field (S4) syntax can content any number of [EXPORT_BLOCK_DESCRIPTOR], these blocks will be replaced by their actual
content.
Example:

If instead of putting [EXPORT_BLOCK_DESCRIPTOR] you put &[EXPORT_BLOCK_DESCRIPTOR], then the same data is attached to
the Email. The position in the S4 field where the &[..] is placed does not matter, the attachment &[…] descriptor will NOT appear in the
content itself, but will produce the given attachment.
Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “ONSTATUS” on page 38.

1.2.75 SENDSMS
Syntax[command]

SENDSMS S1,S2

• S1 is the SMS recipients list.
Please refer to chapter “SMS on alarm configuration” in the General User Guide, for syntax of this field.

• S2 is the content of the message (maximum 140 characters).
Purpose:

This command posts a scheduled action request for an SMS generation.
When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled action and allows tracking this action. It is also
possible to program an ONSTATUS action that will be called when the action is finished (with or without success).
Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “ONSTATUS” on page 38.

S4 = "Event Log data [$dtEV] And a real time table: [$dtRL $ftT $tnMyTag]"
Rem will generate an Email with [$dtEV] and [$dtRL…] replaced by the actual data.

M$ = "Event Log data are attached to this mail &[$dtEV]"
Rem will generate an Email with "Event Log data are attached to this mail " as content
and an attachment with the events log.

SENDMAIL "ewon@actl.be", "", "Subject", "Message"

SENDMAIL "ewon@actl.be", "", "Subject", M$

REM send an SMS to 2 recipients.
D$ = "0407886633,ucp,0475161622,proximus"
D$ = D$ + ";" + "0407886634,ucp,0475161622,proximus"
SENDSMS D$, "Message from eWON"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 49

Programming Guide
1.2.76 SENDTRAP
Syntax[command]

SENDTRAP I1,S1

• I1 is the first trap parameter (INTEGER)
• S1 is the second trap parameter (STRING)

Purpose:
This command posts a scheduled action request for an SNMP TRAP generation.
The first parameter is sent on OID .1.3.6.1.4.1.8284.2.1.4.2
The second parameter is sent in OID .1.3.6.1.4.1.8284.2.1.4.1

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled action and allows tracking this action. It is also
possible to program an ONSTATUS action that will be called when the action is finished (with or without success).
Example:

See also:
“GETSYS, SETSYS” on page 24, “ONxxxxxx” on page 33, “ONSTATUS” on page 38.

--

-- Script information

--

ewonScript OBJECT IDENTIFIER ::= { prodEwon 4 }

scpUserNotif OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This is the text of the last trap sent by the Script"

::= { ewonScript 1 }

scpUserNotifI OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This is a free parameters for script generated traps"

::= { ewonScript 2 }

Table 22: Part of MIB regarding BASIC TRAP

REM send a trap with NotifI = 10 and Notif = Trap message
SENDTRAP 10,"Trap message"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 50

Programming Guide
1.2.77 SETIO
Syntax [command]

SETIO TagRef, F1

• TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10
• F1 is the value to give to the Tag.
Purpose:

Modifies the value of a Tag. The Tag must be writable (not for the read-only Tags).

Note:
In many cases this function is efficiently replaced by the TagName@ syntax. For example SETIO "MyTag", 10.2 is equivalent
to MyTag@=10.2

Example:

1.2.78 SETTIME
Syntax [Command]

SETTIME S1

• S1 is the new date / time to set.
• S1 can contain only the time. In that case the date is not modified.
• S1 can contain only a date. In that case the time is set to 00:00:00

Purpose:

Updates the eWON’s real time clock.

Note:
An event is generated in the events log.

Example

See also:
“TIME$” on page 55

SETIO "MYTAG", 10.123

REM The following are valid time updates
SETTIME "1/1/2000": REM Time is set to 01/01/2000 00:00:00
SETTIME "01/12/2000 12:00": REM Time is set to 01/12/2000 12:00:00
PRINT TIME$: REM suppose it returns "15/01/2000 07:38:04"
SETTIME "12:00": REM Time is set to 15/01/2000 12:00:00
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 51

Programming Guide
1.2.79 SFMT
Syntax [Command]

SFMT Item,EType[,ESize,SFormat]

• Item is the number (Integer or Float) to format into string.
• EType is the parameter determining the type of conversion.
• ESize is the size of the output string as formated.
• SFormat is the format specifier for the conversion.

Purpose:
Converts a number (float or integer) to a formated string.
The type of conversion is determined by the EType parameter.

If ESize is equal to 0 (or negative) with a SFormat present, then ESize is the size of the output string as formated.
If ESize is positive, SFMT will produce a string of ESize bytes.

See also:
“FCNV” on page 18

1.2.79.1 Convert float to IEEE float representation
The IEEE float representation use four bytes (32 bits).

EType = 1 or 2
The string could be LSB first or MSB first.

Example:

EType value conversion type

1 convert float number to string (MSB first)

2 convert float number to string (LSB first)

10 convert an Integer to string (MSB first)

11 convert an Integer to string (LSB first)

20 format float number using a SFormat specifier

30 format integer number using a SFormat specifier

40 format time as Integer into time as String

A$ = SFMT FloatNum, 1 : convert FloatNum to a string holding the IEEE representation with MSB first

A$(1) = MSB (Exponent+ Sign) ... A$(4) = LSB (Mantissa LSB)

A$ = SFMT FloatNum, 2 : convert FloatNum to a string holding the IEEE representation with LSB first

A$(1) = LSB (Mantissa LSB) ... A$(4) = MSB (Exponent+ Sign)

ieee = -63.456
A$ = SFMT ieee,1
rem a$(1)=194 a$(2)=125 a$(3)=210 as(4)=242

A$ = SFMT ieee,2
rem a$(1)=242 a$(2)=210 a$(3)=125 as(4)=194
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 52

Programming Guide
1.2.79.2 Convert integer to string
Convert an integer value to a string holding the bytes array representation of this integer.
This representation can be MSB (Most Significant Byte) first or LSB (Least Significant Byte) first.
EType = 10 or 11
The ESize parameter is required. It is the size of the returned string (it can be 1, 2, 3 or 4)
Example:

1.2.79.3 Convert a float to a string using a SFormat specifier
Convert a float number (MyVal=164.25) to a String using a Format specifier.
EType = 20
The ESize parameter is required. It is the size of the returned string (use 0 to let eWON set the length).
The SFormat parameter is required. It is the format specifier string and is like "%f" or "%.5g".

The syntax for the float format specifier is "%[flags][width][.precision]type".

Examples:

a% = 1534
A$ = SFMT a%,10,4
rem a$(1)=0 a$(2)=0 a$(3)=5 as(4)=254

A$ = SFMT a%,11,4
rem a$(1)=254 a$(2)=5 a$(3)=0 as(4)=0

type
(required)

• 'f', 'F' : Print a float in normal (fixed-point) notation.
• 'e', 'E' : Print a float in standard form ([-]d.ddd e[+/-]ddd).
• 'g', 'G' : Print a float in either normal or exponential notation, whichever is

more appropriate for its magnitude. 'g' uses lower-case letters, 'G' uses
upper-case letters. This type differs slightly from fixed-point notation in that
insignificant zeroes to the right of the decimal point are not included. Also,
the decimal point is not included on whole numbers.

flags
(optional)

• '+' : always denote the sign '+' or '-' of a number
(the default is to omit the sign for positive numbers).

• '0' : use 0 to left pad the number.

width
(optional)

• number : set the length of the whole string for padding.
Only needed when flag 0 is used.

.precision
(optional)

• number : the decimal portion of the output will be expressed in at least
number digits.

MyVal = 164.25
A$ = SFMT MyVal,20,0,"%f"
rem a$="164.250000"
A$ = SFMT MyVal,20,0,"%012.3f"
rem a$="00000164.250"
A$ = SFMT MyVal,20,0,"%e"
rem a$ = "1.642500e+02"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 53

Programming Guide
1.2.79.4 Convert an integer to a string using a SFormat specifier
Convert an integer number (a% = 1935) to a String using a Format specifier.
EType = 30
The ESize parameter is required. It is the size of the returned string (use 0 to let eWON set the length).
The SFormat parameter is required. It is the format specifier string and is like "%d" or "%o".

The syntax for the float format specifier is "%[flags][width]type".

Examples:

1.2.79.5 Convert time as Integer into time as String
Convert an Integer holding the number of seconds since 01/01/1970 00:00:00 into a String holding a time in the format “dd/mm/yyyy
hh:mm:ss” (ex: “28/02/2007 16:48:22”) .
EType = 40
SFMT TimeAsInt,40

The TimeAsInt must be an Integer. If not, the function will return a syntax error.
If a float parameter is passed, it must be converted to an integer value first (See INT on page 29)

Important: Float value have not enough precision to hold the big numbers used to represent seconds since 1/1/1970, this
leads to lost of precision during time conversion.

Example:

1.2.80 SGN
Syntax [function]

SGN F1

Purpose:

Returns the sign of F1.

• If F1 is > 0, the function returns 1.
• If F1 = 0, the function returns 0.
• If F1 is < 0, the function returns -1.

Example:

type
(required)

• 'd : convert into integer notation.
• 'o' : convert into Octal notation.
• 'x' or 'X' : convert into Hexadecimal notation (lowercase or uppercase)

flags
(optional)

• '+' : always denote the sign '+' or '-' of a number
(the default is to omit the sign for positive numbers).

• '0' : use 0 to left pad the number.

width
(optional)

• number : set the length of the whole string for padding.
Only needed when flag 0 is used.

a% = 2568
A$ = SFMT a%,30,0,"%010d"
rem a$="0000002568"
A$ = SFMT a%,30,0,"%o"
rem a$="5010" OCTAL notation
A$ = SFMT a%,30,0,"%X"
rem a$ = "A08"

A$ = SFMT 0,40
rem a$="01/01/1970 00:00:00"

a% = 1000000000
A$ = SFMT a%,40

rem a$="09/09/2001 01:46:40"

SGN (-10) REM returns -1
SGN (-10.6) REM returns -1
SGN 10 REM returns 1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 54

Programming Guide
1.2.81 SQRT
Syntax [function]

SQRT F1

Purpose:

Returns the square root of F1.

Example:

1.2.82 STR$
Syntax [function]

STR$ F1/E1

Purpose:

The function returns the character string related to an E1 or F1 number.

Example:

See also:
“VAL” on page 56

1.2.83 TIME$
Syntax[function]

TIME$

Purpose:
Returns the string with the current date and time. The output format is “dd/mm/yyyy hh:mm:ss” (ex: “25/10/2004 15:45:55”)
The number of characters in the returned string is constant.

Note:
The GETSYS command provides a mean to return the current time as a number of seconds since 1/1/1970.

The SFMT and FCNV functions allow you to convert between TimeString and TimeInteger.

Example:

See also:
“SETTIME” on page 51, See FCNV on page 18, See SFMT on page 52

1.2.84 TGET
Syntax[function]

TGET E1

• E1 is the number of the timer (1 to 4).
Purpose:

Returns N (>0) if the timer expires and then resets the value (N is the number of times the timer has expired).
Returns '0' if the timer did not expired since the last call to TGET.

Example:

See also:
“ONTIMER” on page 38, “TSET” on page 56.

SQRT 16 :REM returns 4

a%=48
a$= STR$ a%
REM A$ is worth " 48 " after this affectation

PRINT TIME$

REM timer 1 minute
TSET 1,60
Label1:
IF NOT TGET 1 GOTO LABEL1
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 55

Programming Guide
1.2.85 TSET
Syntax[Command]

TSET E1, E2

• E1 is the number of the timer (1 to 4).
• E2 is the value in seconds of the timer.

Purpose:

Initializes the timer E1 at an E2 time base (in second). The timer is read by TGET.

Example:

To stop a timer, you must put the value 0:

See also:
“ONTIMER” on page 38, “TGET” on page 55.

1.2.86 VAL
Syntax [function]

VAL S1

Purpose:

The function evaluates the character string and returns the corresponding expression.

Note:
VAL is a function that usually takes an expression and returns a Real after expression evaluation. This VAL function can also
evaluate an expression that returns a string.

Example:

See also:
“STR$” on page 55.

REM timer 1 minute
TSET 1,60
Label1:
IF NOT TGET 1 GOTO LABEL1

TSET 1,0

a$= "12"
a% = VAL (" 10"+ a$)
REM a% equal 1012
a$="abc"
b$="efg"
c$=val("a$+b$")
REM c$ equal "abcefg"
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 56

Programming Guide
1.2.87 WAIT
Syntax [function]

WAIT N1,S[,N2]

• N1 is the File number to wait on.
• S is the operation to execute (max 255 char)
• N2 is the timeout in sec (if omitted, the default is 60 sec)

Purpose:
The WAIT command is used to monitor events on files.
Currently the events monitored are:

• Data received on TCP and UDP socket

Wait for data available on N1 (or TimeOut) and then execute the S operation (ex: "goto DataReceived").
The WAIT function will register a request to wait for the event, it will not block until the event occurs.
When the WAIT function calls the operation, it will preset the EVTINFO (see Getsys PRG,”EvtInfo”), with the result of the operation:

You can have a maximum of 4 WAIT command pending at the same time.
If a WAIT command is pending on a file and another WAIT command is issued on the same file, an “IO Error” error will occur.

Example for TCP socket

REM: this example connects to a server running the ECHO protocol (see: http://en.wikipedia.org/wiki/ECHO_protocol).

EVTINFO meaning

>0 The event occurred and read can follow
=1: Read is pending
=2: Ready for Write
=3: Ready for Write and Read is pending

Important: If Read is pending, then the A$=Get N1 function will be used, in case the Get
function returns an empty string, it means that there is an error on the socket (either the
socket was closed by the other party or the socket is not writable), in that case, the file
should be closed because it is not more valid.

-1 The wait operation was aborted because of an error on the file monitored (for example the file
was closed).

-2 The condition was not met during the wait operation (TimeOut).

tw:
 Cls
 Close 1
 OPEN "tcp:10.0.100.1:7" FOR BINARY OUTPUT AS 1
 o%=0
wo:
 a% = Getsys Prg,"actionstat"
 If a%=-1 Then Goto wo
 Put 1,"msg_start"
 Wait 1,"goto rx_data"
End

rx_data:
 a%=Getsys Prg,"evtinfo"
 If (a%>0) Then
 Print "info:";a%
 a$=Get 1
 Print a$
 Put 1,"abc"+Str$(o%)
 o%=o%+1
 Wait 1,"goto rx_data"
 Else
 Print "error:";a%
 Endif
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 57

http://en.wikipedia.org/wiki/ECHO_protocol

Programming Guide
1.2.88 WOY
Syntax [Function]

WOY E1 / S1

• E1 is a date in integer format (number of seconds since 1/1/1970)
• S1 is a date in String format ("18/09/2003 15:45:30")
Purpose:

This function returns an integer corresponding to the ISO8601 Week-Of-Year number that matches a specified time variable.
REM: Do not call the function with a float variable of value (or this would result to error "invalid parameter").

Example 1:

Example 2:

See also:
“DAY” on page 14, “DOW” on page 15, “DOY” on page 16, “MONTH” on page 33

1.2.89 XOR
Syntax [Operator]

E1 XOR E2

Purpose:
This command returns the bitwise XOR comparison of E1 and E2.
a XOR b returns 1 if a if true or if b is true, but NOT IF both of them are true.
Example:

See also:
“Operators priority” on page 8, “AND” on page 12, “OR” on page 43.

a$ = TIME$
a% = WOY a$

b% = getsys prg,"TIMESEC"
a% = WOY b%

1 XOR 2 returns 3
2 XOR 2 returns 0
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 58

Programming Guide
1.3 Debug a BASIC program
To debug your basic program, you can use the "Script control" screen of the "Script setup" page that is described in chapter “The Script
control link” on the General User Guide”.

1.4 BASIC Errors Codes
These codes are returned in ONERROR:

Error Name Error Code

syntax error 0
'(or)' expected 1
no expression present 2
'=' expected 3
not a variable 4
invalid parameter 5
duplicate label 6
undefined label 7
THEN expected 8
TO expected 9
too many nested FOR loops 10
NEXT without FOR 11
too many nested GOSUBs 12
RETURN without GOSUB 13
Out of memory 14
invalid var name 15
variable not found 16
unknown operator 17
mixed string&num operation 18
Dim index error 19
',' expected 20
Number expected 21
Invalid assignment 22
Quote too long 23
Var or keyword too long 24
No more data 25
reenter timer 26
label not found 27
Operation failed 28
ENDIF expected 29
ENDIF without IF 30
ELSE without IF 31
Math error 32
IO Error 33
End of file 34
val in val 35

Table 23:
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 59

Programming Guide
1.5 Configuration Fields
This section describes the fields found in the config.txt file.
All the fields are readable and writable using GETSYS and SETSYS(unless otherwise specified). The file is separated in the several
sections (System, UserList and TagList). One of the three sections must first be loaded with the "SETSYS SYS, xxx" command, where
xxx is one of SYS, USER or TAG.
Example:

Setting the eWON Identification parameter and printing the Information (parameter = Identification, Information)

1.5.1 SYS Config
The following table describes the fields accessible from the system configuration. The last column gives the ewon configuration web page
where the parameter appears. The web pages are found under Configuration.

SETSYS SYS, "LOAD"
SETSYS SYS, "Identification", "10.0.0.53"
PRINT GETSYS SYS, "Information"
SETSYS SYS, "SAVE"

Name Description Web Page

Identification Identification of the eWON (appears on the logon web page
logon below the logo) System Setup/General/General/Identification

Information Complementary information about the eWON System Setup/General/General/Identification

SmtpServerPort SMTP server port System Setup/General/General/

SmtpServerAddr SMPT server address System Setup/General/General

SmtpUserName SMTP user name System Setup/General/General

AlRetrigInt Interval after which an alarm will be re triggered if the
condition is still true (only for alarms that have not been System Setup/General/General

NtpEnable 1 if NTP service is enabled, 0 otherwise System Setup/General/General

NtpServerAddr NTP Server address as a chain of char System Setup/General/General

NtpServerPort NTP server port System Setup/General/General

NtpInterval Interval between NTP connections System Setup/General/General

PrgAutorun 1 if script starts at eWON boot time. See script control page Script Setup

FormatRequest 1 if a format has been requested, 0 otherwise System Setup/General/General

MbsBaudRate Modbus baud rate. 0 if disabled, positive value otherwise IO Server Config Modbus

Mbs2StopBit 1 if Modbus IO server uses two stop bits, 0 if it uses 1 stop bit IO Server Config Modbus

MbsParity 0 for none, 1 for even, 2 for odd IO Server Config Modbus

MbsReplyTO Modbus reply time out IO Server Config Modbus

MbsPR(x) x = 1..3, Modbus topic 1..3 polling rate (expressed in Msec) IO Server Config Modbus

TimeZoneOffset Time zone (expressed in seconds) System Setup/General/General

MbsAddress Modbus address IO Server Config Modbus

MbsSlaveEn 1 if Modbus slave mode enabled IO Server Config Modbus

DecSeparator Decimal separator: 44 = "," 46 = "."

Page(x) x = 1..11, User Page as defined in the Page Lists config page Pages List

Table 24: system configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 60

Programming Guide
The MbsBits parameter specifies how to Modbus IO Server will read the bytes. The possible values are 7 and 8 bits/byte.

IOSrv(x) x = 0..9

IOSrvData(x) x = 0..9 "Corresponding IO Server Config"

SecureUsr 1 to Enable user security pages System Setup/General/General

HomePage User defined home page System Setup/General/General

MbsSMB(x) x=1..3, Modbus Topic x

MbsSIP(x) x=1..3, Modbus Topic x IP address IO Server Config Modbus

FtpServerPort FTP Server port System Setup/General/General

FtpServerAddr FTP server address System Setup/General/General

FtpUserName FTP login name System Setup/General/General

FtpPassword FTP password System Setup/General/General

SmtpAllowB64

MbsEn(x) x=1..3, Modbus Topic x enabled (1 if enabled, 0 otherwise) IO Server Config Modbus

FTPC_SDTO

FTPC_SCTO

FTPC_ACTO

FTPC_RDTO

DNS_SRTO

SnmpCom(x) x=1..5, SNMP Community x System Setup/General/SNMP

SnmpR x=1..5, SNMP Community x Read enabled System Setup/General/SNMP

SnmpW x=1..5, SNMP Community x Write enabled System Setup/General/SNMP

SnmpAlwAll Accepts SNMP packet from any host (1 = enabled) System Setup/General/SNMP

SnmpHIp(x) x=1..5, SNMP Host x IP Address System Setup/General/SNMP

SnmpHCom(x) x=1..5, SNMP Host x Community System Setup/General/SNMP

SnmpHTrap(x) x=1..5, SNMP Host x Trap enabled System Setup/General/SNMP

SnmpHAlw(x) x=1..5, SNMP Host x access allowed System Setup/General/SNMP

MbsBits* Modbus Bits (7 or 8) N/A

AlMaxTry Number of times an action is retried in case of error System Setup/General/General

AlRetryInt Interval between action trials in case of error System Setup/General/General

Table 24: system configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 61

Programming Guide
1.5.2 Com Section
This section describes the fields found in the comcfg.txt file. All the fields are readable and writable (unless otherwise specified) using
GETSYS and SETSYS with the COM parameter.

Example:

Setting the First ISP phone number (parameter = PPPClPhone1) to number 0123456789:

The following table describes the fields accessible from the communication configuration. The last column gives the ewon configuration
web page where the parameter appears. The web pages are found under System Setup.

SETSYS COM, "LOAD"
SETSYS COM, "PPPClPhone1","0123456789"
SETSYS COM, "SAVE"

Name Description Web Page

EthIp Ethernet IP address Communication/Ethernet

EthMask Ethernet IP Mask Communication/Ethernet

EthGW Ethernet Gateway Communication/Ethernet

ModemInitStr Modem Initialization String Communication/Modem

PPPServerIP PPP Server IP Address Communication/Dial UP (PPP)

PPPServerMask PPP Server IP Mask Communication/Dial UP (PPP)

PPPServerGW PPP Server Gateway Communication/Dial UP (PPP)

PPPClientIp PPP Client IP Address Communication/Dial UP (PPP)

PPPClCompress Enable PPP Client Compression (enabled =1) Communication/Dial UP (PPP)

PPPClPhone1 ISP1 Phone number Communication/Dial UP (PPP)

PPPClUserName1 ISP1 User Name Communication/Dial UP (PPP)

PPPClPassword1 ISP1 Password Communication/Dial UP (PPP)

PIN PIN code (for GSM modem usage only) Communication/Modem

RTEnIpFwrd Enable IP forwarding (1 = enabled) Communication/Router (Filter)

DialInOut Enable Dial in / out / both (1 / 2 / 3) Communication/Dial UP (PPP)

InEqualOut Enable Usage of dial in connection to dial out (enabled = 1) Communication/Dial UP (PPP)

DialTO Dial out timeout Communication/Dial UP (PPP)

ClIdle Client mode idle timeout before hang up Communication/Dial UP (PPP)

SrvIdle Server mode idle timeout before hang up Communication/Dial UP (PPP)

EthDns1 Ethernet DNS 1 IP Address Communication/Ethernet

EthDns2 Ethernet DNS 2 IP Address Communication/Ethernet

PPPSrvCompress Enable PPP Server compression (enabled = 1) Communication/Dial UP (PPP)

PPPClNeedChap Enable CHAP authentication requirement (enabled = 1) Communication/Dial UP (PPP)

PPPClPhone2 ISP2 Phone number Communication/Dial UP (PPP)

PPPClUserName2 ISP2 User Name Communication/Dial UP (PPP)

PPPClPassword2 ISP2 Password Communication/Dial UP (PPP)

CallAlloc Allocated Budget Communication/Dial UP (PPP)

CallAllocRst Budget Reset Period Communication/Dial UP (PPP)

Table 25: communication configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 62

Programming Guide
* The following table describes the possible modem type values:

***Modem type can be found in the eWON Information page you open by clicking on the eWON Logo. In the above case: “Internal
BIBAND GSM (131)”

CBEnabled Enable callback (enabled = 1) Communication/Callback

CBDelay Delay after rings before callback (in seconds) Communication/Callback

CBIdleTime Callback mode idle timeout before hang up Communication/Callback

CBPubEMail Email address where to send the IP address when callback Communication/Callback

CBDDnsType Dynamic DNS Type Communication/Callback

CBDDnsUName Dynamic DNS User Name Communication/Callback

CBDDnsPass Dynamic DNS Password Communication/Callback

CBDDnsHName Dynamic DNS Host Name Communication/Callback

CBDDnsDName Dynamic DNS Domain Name Communication/Callback

CBType Callback type (0 = Callback on ring, 1 = Callback on User’s
Request)

Communication/Callback

CBNbRing Minimal number of rings to detect callback Communication/Callback

CBTo ISP to use when calling back (1 / 2)

RTEnTransFw Enable transparent forwarding (enabled = 1) Communication/Router (Filter)

RTEnAuthRt Enable user authentication when forwarding (enabled = 1) Communication/Router (Filter)

RTEnableNat Enable Network Address Translation (enabled = 1) Communication/Router (Filter)

ModDetCnt Number of time the eWON tries to detects the modem in case of
error (default = 1) N/A

ModExpType* Expected modem type (default = -1) N/A

ModFrcType* Forced modem type (default = -1) N/A

SSAM** Server Access Selection Mode N/A

CBNbRingOH Number of rings more than the minimal for callback Communication/Callback

Type Value

Not used -1

No modem 0

14400 baud 1

33600 baud 2

56600 3

ISDN 4

Unknown 5

Wavecom Wismo Q2403 GSM/GPRS 0X83***

Table 26: modem type values

Table 25: communication configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 63

Programming Guide
** The following table describes the SSAM possible values:

1.5.3 Tag Section
This section describes the configuration fields for a single Tag. The fields are readable and writable using GETSYS and SETSYS with the
TAG parameters and the Tag name.
Example:
Printing the alarm status and setting the value (to 45) of the Tag “testTag”.

The following table describes the fields accessible from the Tag configuration. The web pages are found under Tag Setup/Tag Name.

Description Value

The last server that worked will be used for next call -1

Return to first 0 (default)

Always use server 1 1

Always use server 2 2

Table 27: SSAM values

SETSYS TAG, "LOAD", "testTag"
PRINT GETSYS TAG, "alstat"
SETSYS TAG, "TAGVALUE", 45
SETSYS TAG,"DoSetVal",1
SETSYS TAG, "SAVE"

Name Description

Id Tag id. Not editable through the web page (only for program usage)

Name Tag name

Description Tag description

ServerName IO Server the Tag gets the value from

TopicName Topic the Tag takes its basic configuration from

Address Tag address

Coef Tag value multiplier coefficient

Offset Tag value offset

LogEnabled Enabled Tag value logging (enabled = 1)

AlEnabled Enable Tag alarm (enabled = 1)

Type 0 = Boolean, 1 = analog

AlBool Boolean Tag alarm level

MemTag Is memory Tag (1 = memory Tag, 0 = other)

MbsTcpEnabled Modbus TCP Enable

MbsTcpFloat Consider as float value (2 subsequent registers)

SnmpEnabled Enable SNMP (enabled = 1)

RTLogEnabled Enable real time logging (enabled = 1)

AlAutoAck Enable alarm auto-acknowledging (enabled = 1)

ForceRO Force read-only Tag

SnmpOID SNMP OID

AlHint Alarm hint

Table 28: Tag configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 64

Programming Guide
AlHigh Alarm high level (warning level)

AlLow Alarm low level (warning level)

AlTimeDB Alarm interval deadband

AlLevelDB Alarm level deadband

PageId Page the Tag is published on

RTLogWindow Real-time logging time span

RTLogTimer Real-time logging interval

LogDB Historical logging deadband

LogTimer Historical logging interval

AlLoLo Alarm low-low level (danger level)

AlHiHi Alarm high-high level (danger level)

MbsTcpRegister Enabled access to the Tag as a Modbus register (enabled = 1)

MbsTcpCoef Tag value Modbus TCP publishing multiplier coefficient

MbsTcpOffset Tag value Modbus TCP publishing offset

EEN* Enable Email alarm notification config

ETO Email alarm recipient(s) (coma separated) alarm notification config

ECC Email alarm carbon-copy recipient(s) alarm notification config

ESU Email alarm subject alarm notification config

EAT Email alarm attachment (as Export Block Descriptor) alarm notification config

ESH Enable Email sent as SMS (enabled = A) alarm notification config

SEN* Enable SMS alarm notification config

STO SMS alarm recipient alarm notification config

SSU SMS alarm subject alarm notification config

TEN* Enable trap (SNMP) alarm notification config

TSU Trap (SNMP) subject alarm notification config

FEN* Enable FTP alarm notification config

FFN FTP destination file name alarm notification config

FCO FTP file content (as Export Block Descriptor) alarm notification config

AlStat Alarm status (0 = no alarm, 1 = in alarm) View IO page

ChangeTime (ReadOnly) Last change time View IO page

TagValue (ReadOnly) Tag current value View IO page

TagQuality (ReadOnly) Quality of the Tag View IO page

AlType (ReadOnly) Alarm Status of the Tag View IO page

DoDelete (WriteOnly) Delete the Tag (0 = do not delete, 1 = delete)

DoAck (WriteOnly) Acknowledge the Tag (0 = do not acknowledge, 1 =
acknowledge)

DoSetVal (WriteOnly) Set to 1 to be able to modify TagValue

Table 28: Tag configuration fields
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 65

Programming Guide
1.5.3.1 Send on alarm notification patterns*
In the table below are listed the different pattern values you will find in the in the “:TagList” section from the config.txt file, in the EEN,
SEN, TEN and FEN columns, depending on the way you configure the send on alarm action for the Tag (that means, depending on which
alarm status will trigger the send on alarm action):

If you activate several of the send on alarm actions checkboxes, the result of the value will be an addition of selected fields’ values:

Example:

If you activate “ALM” and “END” to trigger an SMS sending, the value of the “SEN” field will be 10.

1.5.3.2 Setting a Tag value, deleting a Tag and acknowledging an alarm
A Tag value can be set using the following sequence (shown for a Tag MM1):

There are other ways to change a Tag’s value. Examples:

MM1@ = 1234

setio "MM1",1234

Let’s the MM1 Tag is in alarm state. It is then possible to acknowledge its alarm with the following command:

It is possible to delete a Tag with:

Add Tag

Note: The fields that are not specified will be taken over from the "MM1" tag

ALM ACK RTN END Values

0

x 8

x 16

x 32

x 2

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "TAGVALUE", 1234
SETSYS TAG, "DoSetVal",1
SETSYS TAG, "SAVE"

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "DoAck", 1
SETSYS TAG, "SAVE"

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "DoDelete", 1
SETSYS TAG, "SAVE"
CFGSAVE : REM Writes configuration to flash

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "Name", "New_TagName"
SETSYS TAG, "Address", "New_address"
SETSYS TAG, "SAVE"
CFGSAVE : REM Writes configuration to flash
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 66

Programming Guide
1.5.4 User Section
This section describes the configuration fields for a single user. The fields are readable and writable using GETSYS and SETSYS with
the USER parameters and the user name.

The following table describes the fields accessible from the User configuration. The web pages are found under Users Setup/[The name
from the User].

Examples:

Change_password:

Add_user:

Delete_user:

Name Description

Id User Id (only for programs simplicity)

FirstName User first name

LastName User last name

Login User login

Password User password

Information User information

Right Combination of bits for user rights on Tags (acknowledge, view, write, …)

EMA User Email address

SMS User SMS number

AccessPage The page the user is allowed to access

AccessDir The directory (and subdirectories) the user is allowed to access

CBEn Allow the user to use callback (allowed = 1)

CBMode Callback phone number is: 0 = mandatory, 1 = user defined

CBPhNum Callback phone number

DoDelete (WriteOnly) Delete the User (0 = do not delete, 1 = delete)

Table 29: Users configuration fields

SETSYS USER, "LOAD", "pierre"
SETSYS USER, "password", "new_password"
SETSYS USER, "SAVE"
CFGSAVE : REM Writes configuration to flash

SETSYS USER,"LOAD","username" : REM The "username" must be an
existing user. The same access rights will be applied on the
new user
SETSYS USER,"login","new_username"
SETSYS USER,"password","new_password"
SETSYS USER, "SAVE"
CFGSAVE : REM Writes configuration to flash

SETSYS USER,"LOAD","username"
SETSYS USER,"DoDelete",1
SETSYS USER, "SAVE"
CFGSAVE : REM Writes configuration to flash
RG-002-0-EN ver 1.10 eWON® - 25/06/2013 - ©eWON sa Page 67

	1 Programming the eWON
	1.1 BASIC language definition
	1.1.1 Introduction
	1.1.2 Program flow
	1.1.3 Character string
	1.1.4 Command
	1.1.5 Integer
	1.1.6 Real
	1.1.7 Alphanumeric character
	1.1.8 Function
	1.1.9 Label
	1.1.10 Operators priority
	1.1.11 Type of Variables
	1.1.11.1 Integer variable
	1.1.11.2 Real variable
	1.1.11.3 Alphanumeric string
	1.1.11.4 Characters arrays
	1.1.11.5 Real arrays

	1.1.12 TagName variable
	1.1.13 Tag Access
	1.1.14 Limitations of the BASIC

	1.2 List of the keywords
	1.2.1 Syntax convention
	1.2.2 # (bit extraction operator)
	1.2.3 ABS
	1.2.4 ALMACK
	1.2.5 ALSTAT
	1.2.6 AND
	1.2.7 ASCII
	1.2.8 BIN$
	1.2.9 BNOT
	1.2.10 CFGSAVE
	1.2.11 CHR$
	1.2.12 CLEAR
	1.2.13 CLOSE
	1.2.14 CLS
	1.2.15 DAY
	1.2.16 DEC
	1.2.17 DIM
	1.2.18 DMSYNC
	1.2.19 DOW
	1.2.20 DOY
	1.2.21 DYNDNS
	1.2.22 END
	1.2.23 EOF
	1.2.24 ERASE
	1.2.25 FCNV
	1.2.25.1 Convert from an IEEE float representation
	1.2.25.2 Compute CRC16 of a string
	1.2.25.3 Compute LRC of a string
	1.2.25.4 Convert from an Integer representation
	1.2.25.5 Convert string to a Float using a SFormat specifier
	1.2.25.6 Convert string to an Interger using a SFormat specifier
	1.2.25.7 Convert time as string into time as Integer

	1.2.26 FOR NEXT STEP
	1.2.27 GET
	1.2.27.1 /usr Syntax [function] – Binary mode
	1.2.27.2 /usr Syntax [function] – Text mode
	1.2.27.3 COM Syntax [function] – Binary mode
	1.2.27.4 TCP/UDP Syntax [function] – Binary mode

	1.2.28 GETFTP
	1.2.29 GETHTTP
	1.2.30 GETIO
	1.2.31 GETSYS, SETSYS
	1.2.31.1 Extended syntax to access IOServer lists of parameters

	1.2.32 GO
	1.2.33 GOSUB RETURN
	1.2.34 GOTO
	1.2.35 HALT
	1.2.36 HEX$
	1.2.37 IF THEN ELSE ENDIF
	1.2.37.1 Short IF Syntax
	1.2.37.2 Long IF syntax

	1.2.38 INSTR
	1.2.39 INT
	1.2.40 IOMOD
	1.2.41 IORCV
	1.2.42 IOSEND
	1.2.43 LEN
	1.2.44 LOGEVENT
	1.2.45 LOGIO
	1.2.46 LTRIM
	1.2.47 MOD
	1.2.48 MONTH
	1.2.49 NOT
	1.2.50 NTPSync
	1.2.51 ONxxxxxx
	1.2.52 ONALARM
	1.2.53 ONCHANGE
	1.2.54 ONDATE
	1.2.54.1 Timer Interval settings

	1.2.55 ONERROR
	1.2.56 ONPPP
	1.2.57 ONSMS
	1.2.58 ONSTATUS
	1.2.59 ONTIMER
	1.2.60 ONVPN
	1.2.61 ONWAN
	1.2.62 OPEN
	1.2.62.1 Introduction to file management
	1.2.62.2 OPEN general syntax
	1.2.62.3 Different File/stream types
	1.2.62.3.1 FILE open /usr
	1.2.62.3.2 TCP or UDP stream open Syntax [command]
	1.2.62.3.3 COM port open Syntax [command]
	1.2.62.3.4 EXP export bloc descriptor open Syntax [command]

	1.2.63 OR
	1.2.64 PI
	1.2.65 PRINT - AT
	1.2.66 PRINT #
	1.2.67 PUT
	1.2.67.1 File Syntax[Command] – Binary mode
	1.2.67.2 File Syntax[Command] – Text mode
	1.2.67.3 COM Syntax[Command] – Binary mode
	1.2.67.4 TCP/UDP Syntax[Command] – Binary mode

	1.2.68 PUTFTP
	1.2.69 PUTHTTP
	1.2.70 REBOOT
	1.2.71 REM
	1.2.72 RENAME
	1.2.73 RTRIM
	1.2.74 SENDMAIL
	1.2.75 SENDSMS
	1.2.76 SENDTRAP
	1.2.77 SETIO
	1.2.78 SETTIME
	1.2.79 SFMT
	1.2.79.1 Convert float to IEEE float representation
	1.2.79.2 Convert integer to string
	1.2.79.3 Convert a float to a string using a SFormat specifier
	1.2.79.4 Convert an integer to a string using a SFormat specifier
	1.2.79.5 Convert time as Integer into time as String

	1.2.80 SGN
	1.2.81 SQRT
	1.2.82 STR$
	1.2.83 TIME$
	1.2.84 TGET
	1.2.85 TSET
	1.2.86 VAL
	1.2.87 WAIT
	1.2.88 WOY
	1.2.89 XOR

	1.3 Debug a BASIC program
	1.4 BASIC Errors Codes
	1.5 Configuration Fields
	1.5.1 SYS Config
	1.5.2 Com Section
	1.5.3 Tag Section
	1.5.3.1 Send on alarm notification patterns*
	1.5.3.2 Setting a Tag value, deleting a Tag and acknowledging an alarm

	1.5.4 User Section

