" eWON

MACHINES CAN TALK F

Reference Guide

RG 006 / Rev. 1.3

support.ewon.biz

Programming Reference
Guide

This document explains all there is to know about
Basic Scripting combined with an e WON

TeWON

MACHINES CAN TALK

Table of Contents

1. BASIC language definition 6
T T INTTOAUCTION ettt e e et e et e et e e be e eabeeeaaaesaaeeeseeeaseeenseessseesssseeeensneas 6
1.2, PrOGIOM FIOW ettt ettt et e e st e et ae et e e sbaesaesssessaesaenseensaessasssesnsseennns 6

T.2.1. CNArACTEI SIHNG oottt et er e e e e e etre e eebe e e eetreeesraeeenabaeeeeeeansrnneees 11
1.2.2. COMMUONG ittt ettt e et e e v e e e te e e aee e beesateeesseessaeessseeseeasseesssaessseensseennsseeasanns 12
| T [0} (=T 1= ST RPPP 12
T.20 4 REQAI et ettt et e e et e e e ta e e e eataeeeetbaeesbaeeeesaeaesbaaeeaataseeastaeessaaeeseeannnsrees 12
1.2.5. AlIphONUMEIIC CRAMACTEL ..ttt et etae e enarees 12
1.2.6. FUNCHION ettt ettt et e s e et e et e e e e s beesabeessaeesaeensaeeenassaeeeansaaeaeanns 13
1.2.6.1. FUNCHON AECIAIATION ettt et et aaaeaean 13
1.2.6.2. FUNCHON TETUIMN VAIUE ..ot e 13
1.2.6.3. Keyword “return” inSide fUNCTHIONSciioiiie et 14
1.2.6.4. FUNCHON PAFAMIETELS ..oveiiieieeeeeee ettt ettt cetre e et e e tee e eetne s e eeanrbaeeeeas 14
1.2.6.5. FUNCHON CQll oottt ettt et aa e et e e e e e seesareenanaee s 15
1.2.6.6. Passing arguments DY referenCeooiooieieciieieceeesteeete et 15
1.2.6.7. Recursive FUNCHON CAIlccueeieeeeeeceeeteeee ettt n 16
T.2.7 . LADEI ettt et e et e et e s be e et e e ta e e aaeebeeebeeaabeeeraeenaaeebaeeenrraeeeanns 16
|2 R Mo Yoo | I T | o= IO RPN 17
1.2.8. OPErATOrS PrIONTY evieiieieeieeieeteerteete et e te st steesteesteeaeseesseesseesseesseessassaessseesssesesssesessseeensses 17
1.2.92. TYPE OF VAIMADIES ...ttt ettt ettt et e ra e e e treeeeareeeetreeesabeeeennrees 18
1.2.9.7. INt€QEr VAMNADIE ..ottt et e e stae e e araeaean 18
1.2.9.2. REAI VAMADIE .ottt ettt et e e te e e te e e ae e e s anaeeeas 18
1.2.9.3. AIDNANUMETIC STING ceviiiieiieieeeeeetesterete ettt ettt eae e sb e e e snveeensaeennaee s 19
1.2.9.4. CNOIFOCTEIS QITAYS cootveeieteieeeiee et eeteeeeeteeeeeireeeeitreesetreeesetseeeeareseeenttsseseseeseeeesnrssneens 19
T.2.9.5. REAIQITAYS ettt ettt eete e et e et e etve e eette e e eeteeeeesbeseentseeeeaseseesreseennsrrenes 20
1.2.9.6. LOCAI VAMNADIES ..ottt et ettt et e e eaae e e anaea s 20
1.2.10. TAGNQAME VAMADIE ..ottt et ae e te e aaeeeteeetaeeareeeenns 20
T.2. 1T, TAQ ACCESS cooveeeeieee ettt eeteeeeeteeeeetteeeeteeeeeae e eeetaeeesbaeeesseeeetseeessseeeesseeesesseeesreeeeseesnssnreees 21
1.2.12. LImitations Of The BASIC ...ttt ettt e e e e eaaa e e e e 22

2. List of Keywords 23

2.7, SYNTAX CONVENTION oottt ettt et e et e e et e e eeabeeeetreeeeareeeeeesennnsrneeees 23
2.1.1. # (DIt eXIraCHioN OPEIATON) ..ot et e e e 23
2.1.2. /] [COMMENT) ettt e e et e e te e e te e eeae e eaaeeeaaeeeaseeeseeeseeeaseessseaeeanns 24
2. 1.3, ABS ettt ettt et et e e tee—eeteete et e eaeeatteeteetreeetreeetreeenes 24
2.1 4. ALMAGCK ettt ettt et et ta e ae e be e be b e e rbeeae e be e beebeeabeeaeeennreeenees 24
2.1 . ALST AT ettt ettt et et e e ta e tt e be e beebeeabeeabeete e teebeenbeearenens 25
2.1.6. AND .ottt et et e et e et e ae e eteeteete et e eateeaeeteeteebeeaaeereeenes 25
207 ASCHZ26 ettt ettt ettt ettt ettt ae e e et e e erreeerreeeaes 26
2. 1.8 BING ettt et a e ae e re e be e b e eabe e b e e aa e tee e treeenreeennns 27
2.1, . BNOT ettt ettt ettt et et e et e e ae e ae e beebeeate et e eaeeetaebeenta e e tteeetreeennns 27
2. 110, CFGSAVE et ettt ettt ettt et e e ae et e etteeae e te e ett e e e etaeeetreeennes 28
2 I I B O 13 OSSOSO 28
2,112, CLEAR ettt ettt sttt ettt e e ta et e et e e beebeeaaeetb e ae e beebeeabeeateeraeeennreeenrns 29
2. 113, CLOSE ettt et ettt ettt e b e b e e b e e ae e beebeebeebe e e e ettenteeetreeenres 29
2.1 T4, CLS ettt ettt ettt te e ete e ae et e et e e teeeteeteeabeetteerteetteeeetteeeenreeenes 29
2.1 15, DAY ettt et et et e ettt ettt et e et e tteate e teeteeareeeareeeerreeenes 30

Page 2/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Table of Contents

7 R < T I L S S R PRR 30
2107 DIM ettt h e bttt e a e a e bt e b e et e et e e ateshe e be e be e bteenane 31
2118 DMSYNC ettt ettt ettt st s et e bt e e et e sate s st e bt et e e nbeentesaeenaaeseenbeenteennee 31
22 I 5 PSSR 31
2.1.20. DOY ittt ettt ettt e et ettt e bt et e e be et e e ateasa e bt ebeenteestaesaensaeseeseenseesseann 32
2. 1. 2T DYNDNS ettt ettt e b et et st e s h e bt b e et e at e e st e s ht e bt e b e et e et e eaeenaee 33
2122, END ettt ettt b et et e e a e e st e s a e e bt et e enteeateetbee e nbeeenreeennee 33
2 I B =l L TSRS SRRPSTPRRPSRE 33
W I o Y OSSPSR 34
2.1.25. FCONV ettt ettt e a et e e st s bt e s bt e bt e bt et e e abe e ate bt e bt et e et e earenane 35
2.1.25.1. Convert from an IEEE float representationcceeveeveveeeeicecciiieeeee e, 36
2.1.25.2. Compute CRCTE Of A STNG oo et 37
2.1.25.3. Compute LRC Of A STING weeovieiieieeieceeeeeee ettt e 37
2.1.25.4. Convert from an Integer representationcccceeeeecieecieccecceee e 37
2.1.25.5. Convert string to a Float using a SFormat specifiercocovveeecieeiiecieccneene. 39
2.1.25.6. Convert string to an Interger using a SFormat specifiercocoveeeeiveeeecnnee.n. 39
2.1.25.7. Convert time as string into time as INteger ..., 40
2.1.26. FOR NEXT STEP .ttt ettt st sttt ettt st st s bbb et st esatesaee st e e sanee 40
N I] = OO SRR PSPPI 4]
2.1.27. 1. JUSIIN BINAIY MOTE ..ottt et e s et s s eateessnaee e e e s s e senanes 4]
2.1.27.2. JUSTIN TEXT MOAE ettt e e e e e eae e et et e e aae e e e eanaeas 42
2.1.27.3. COM = BINANY MOUE ...ouiiiiiiee ettt ettt eevee et e eevee e eetveeeeraeeentvaeeenneeseesnnnnes 43
2.1.27.4. TCP/UDP iNn BINAIY MOGE ..ccuveieieie ettt eetaeseevee e e s eeaarnreeeseeeeesnsnnes 43

W I T] = I o I OSSPSR 44
W I] = I 1 I ST S 45
2.1.30. GETIO ettt ettt et ettt ettt et s a e s bt bt e bt b et e eat e e ht e bt e b e ete e bt e e eaaee 46
22 RGN B] = I N TN = IS A OSSPSR 47
2 G I R o OSSPSR 47
2 B N B ST 50
2.1.3T.3. COM ettt ettt e b et sa e st e bbb et et enaa e e s baeesbeees 50

2 B S | | RO 50
2 B G T N USSP 50
2 R B TR Y USRS 50
2.1.31.7. PrOCEAUIE .eiiiiieteteteee ettt ettt sttt ettt st st ae et s e et e satesaeenaeees 50
2.1.31.7.1. Recognized field vAluEes PEr GroUDcccvieiieeiiecieeeeeeeee et 51
2.1.31.7.2. TAG LOOQ ittt ettt ettt ettt v et e esaessaesseessaenbeessesnsesseensaenseaenns 51
2.1.31.7.3. Extended syntax to access I0Server lists of parameterscocoevvevvveveenns 52
2.1.32. GO ettt st h e bttt et e it e h e e bt e bt et e e e hb e e e nbeeenbeeeaaee 53
2.1.33. GOSUB RETURN <.ttt ettt sttt ettt ettt et e e st e st e sbaenseenseensaeesnsaeennseeennnes 54
2 B S 1 1 L USRS 55
2 R KT N I PRSP 55
2136 HEXS ettt ettt b e b e a et te b e st st et e nbeeaeenbeenneeenne 56
2137 HTTPX ettt ettt sttt ettt e e st e bt e e e st e st e s st e s st e beenbeenseensesstenseenseenseensennsenane 56
2.1.37.1. REQUESTHTTPX .ottt ettt sttt et te et st e st e steeae et e esaessaesseensaenseenseaennseens 56
2.1.37.2. RESPONSEHTTPX ..ottt ettt et e st e e eve et st e saeesaeesseesseesaesssessaasseenseeenssaeensseens 58
2.1.38. IF, THEN, ELSE, ENDIF ...oiiitiitieieeteeteete ettt ettt ettt ettt s b e sae s et e ennee e 59
2.1.38.T. SNOIM IF SYNTAX ittt eette et eeeareeeeteeeeeabeseesraeeeseseeeenanes 59

Page 3/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Table of Contents

2.1.38.2. LONG IF SYNTAX ettt sttt et s e e e e eeseessseesnaaeesnnneaesennnnes 60
2. 1.8 INSTR ettt ettt ettt e et e e et e e e e e s tae e aaeebeeesaeeasbe e sre e baeenbeeanbeeannaaaaeeannaaaeeeanraeaeaanns 60
2.1 40, INT ettt et e et e e et e e e b e e s ate e te e e bae et e e et be e tae e aaeabee e beeerbeearteeaeeeaaeereeeaaeeeann 61
2.1 4T IOMOD ettt et e et e et e e ba e e be e e tae e taeebaeeteeeabaeattaaeeeanraaaeeanns 62
2142, J0ORCV ettt ettt et e e ettt e e ett e e te e ateeeateeeteeebeeereeeateeertaeeanns 62
2 G TR [Y = N 5 RS OUSPRRRPPRRN 64
2044, LEN ettt e te e e bt e e beeeta e e aeeeaaeeebaeeabeeaabaaaeanaaaaeeanrraaeeanns 65
2.1 45, LOGEVENT ettt et e et e et e et e e e ta e e teeebeesabeeeaseenssseaeeessesaeesnraeaeeanes 66
2146, LOGIO ettt ettt et e e te e e ae e eaae e teeeeaaeebeeeaseeeaseaeeeeaaaeeeeeraaaeeanns 66
2047 LTRIM ettt et e e e et e st et e e ta e et e e e b e e ssae e saeenseeessaeasseassseansseessseanseessseesanssnaeeanns 67
2. 148, MEMORY ettt ettt ettt e ettt e et e e b e e et e e ra e e aeaeteeerbeeaabeeaaaeeeeanraeaeeanns 67
2149, MOD et e ete e e be e e te e et e e eaeeetaeeabaeeabeeaataaeeetaaaeeearaaaaeanns 68
2.1.50. MONTH et ettt e et eete e et e e etaeeebeeeteeeaseeeaseeeseeeasseenssseeesensasaeeanns 68
2 S 3 R L SR OUPPRRRPPRRRR 69
2152, NTPSYNC ittt ettt ettt e e e et e e st e e s aa e e aaeeseeesbeessseesseenseeensaessseeasseeseeanseeanns 69
2.1 .53, ONXXXXXX teeerereeireeeeirreeaiiteeeeisseeeeseeestesesastssasssssaasssssasssssssassseesssesessssssesssssesssssessssesssssassssssnes 69

2.1.53. 1. ONALARM ettt ettt et e e e et e e tt e e etaeeteeeaaeeeaseeeateeneeennnes 71

2.1.53.2. ONCHANGE ..ottt et e et e e s b e e s rae e as e e e e s nseaaeennnees 71

2.1.53.3. ONDATE ..ottt ettt e e st e e s aa e e s aa e e tae e beeesbaesaseesssaenseeeseeenseesanes 72

2.1.53.3.1. TIMer INterval SEHINGS .oooeieeee e et 72

2.1.53.4. ONERROR ..ottt ettt ettt et e e e e e e e aae e teeeetaeeateeeaseeesseeeseeeseeenrees 74

A S TG TR T @] 1 o USRS 75

2.1.53.6. ONSMS et e e e e aa e et e e be e s be e s abe e e aae e aeeeteeebeeeabaeanaaennees 75

2.1.53.7. ONSTATUS ettt e et e et e e et e e ta e e ae e ebeesateeesseeesseeseeeseeeanas 77

2.1.53.8. ONTIMER ...ttt et e e e e e e e e e ta e e teeeeraeeaseeeaseeeaseeeseeeseeeanes 77

A IS TG TR @] A USSR 78

2.1.53.T0. ONWAN Lottt ettt e e e et e e e b e e aae e teeebeesaaeaeeennsseeeeannseeeeennsrnes 78
2154, OPEN oottt et te e e he e e b e e e aeeeaa e e bee e beeebeeetbaeateeeneeeteaans 79

2.1.54.1. Introduction to file ManNagemMENTt ... 79

2.1.54.2. OPEN QENEIAI SYNTAX iiiiiiiiieeieeeieeeie ettt ettt ve et e et eeveessaeesaseenaaennaeas 79

2.1.54.3. Different Fle/StreQm TYDES ...t etre e e eeeeeeaanes 80

2.1.54.3. 1. FILE OPEN JUSE ettt ettt e eeaae e e e et e e eeaateeaeeeaeaaaeeas 80
2.1.54.3.2. TCP or UDP stream open Syntax [COMMANA]ccecveevieereeenieeieeeireeee e 81
2.1.54.3.3. COM port open Syntax [COMMAONA]ooovvveeieiieiieieeeccree et 82
2.1.54.3.4. EXP export bloc descriptor open Syntax [command]cccevevveeeeneeeennenn. 83
2.1 .55, OR ettt e e te e ette e et e e aaaeetaeebeeaabaaaeaaaaaaeeatraaeeans 84
2156 Pl ettt e e e e it e e at e e aa e e ae e e aeeeateeetteeaaeeereeeareeetraaaeaan 85
2157 PRINT = AT ettt ettt et e st e et e et e e aeessbeessaaesaeesseeessaassseesssaanseaaaessssaessssaeaeaanes 85
2158, PRINT H oottt ettt e e e st e et e e te e e aseesabeessaeeseeessaessseessseassaeeesnssaeeesnnsseaeeanes 86
2.1 .50 PUT et ettt e et e e e et e e be e et e et e e e aae e ae e e beeebeeeaaeeeteeeataeeteeereeaanaeaas 87

2.1.59.1. File Syntax[Command] — BiNAry MOAEcecceeieeiieeieeeeeeeeteeee et 87

2.1.59.2. File Syntax[Command] — TEXT MOAEccveiieeiieieeeeeee e e 88

2.1.59.3. COM Syntax[Command] — BINAry MOAEcoovviieiviiieeieeteee e 88

2.1.59.4. TCP/UDP Syntax[Command] — BINAry MOAEcoouvvevveiieieiieieee e 89
2.1.60. PUTFTP ettt ettt et e e et e e etae e te e e aeeeaseeesaeeeseeenseesaseeeaseensseessesensssaeeanns 89
2161 PUTHTTP ettt ettt e et e et e e et e e ta e e baeeseeesseesssa e saeesseeesseesssaessseessaanseeenseanns 90
2.1.62. REBOOT ..ottt ettt ettt e e e ve e e b e e s at e e baeeaaeesteeessaessseessseensaaesnsssaeesnnsasaeeanns 92

Page 4/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Table of Contents

2163, REM ettt ettt et ettt b e b e e reera et e b e eaeeaeenb e b e beere e saeenraetneenns 93
2164, RENAME ..ottt ettt st ettt et e st e e st et et e b e e bt eab e e st e snbeensaeenbeenneeenne 93
2165 RTRIM ottt ettt ettt ettt et s b e s et e e e b e b e e b e ese e st e b e b essaesaenseeesseenseesnsaenssennns 94
2.1.66. SENDMAIL oottt ettt sttt et b e be st e e se et e s e b e ebeeseessansesseesaessensensesenns 94
2.1.67 . SENDSMS .ottt ettt ettt ettt te e ra st e b b e e beere et e b et e eaeessenb et e entaeenreereeenns 95
2.1.68. SENDTRAP <.ttt ettt ettt ettt e st e st et e b e s st e st e st et esbeenseesnbeenseesnseenseennne 96
2.1.69. SETIO ittt ettt ettt ettt ettt e et e st et e b e e beese e st et et e ebeene e st enbeenbe e seeensaenneeenne 97
2.1.70. SETTIME <ottt ettt ettt ettt et e b e e beesa e st ess e basseeseessassasseesseesssaenssenssaensneanns 98

2.1 7T SEMT ettt h ettt b b b e teera et e beeaeeraenb et e beereeteeenraeaaeenns 98
2.1.71.1. Convert float to IEEE float representationiieeiicecieeceee e, 99
2.1.71.2. Convert integer 10 STING oo 100
2.1.71.3. Convert a float to a string using a SFormat specifiercovvveeiieeeecieennen. 101
2.1.71.4. Convert an intfeger to a string using a SFormat specifiercccocvvevevvenevenneen. 102
2.1.71.5. Convert fime as Integer into fime as SIMNG ..oooeeeeeeeeeeeee e, 102

2172, SGN ettt ettt e b ettt h e bt a et e b e bt e ae st et e b e e s e ententenbeete e st entensbeenrees 103
2,173, SQRT ettt ettt et e b e beete st et e b e e taett e st e b e ebeereentenbanteetaesaenaeenreas 104
2174, STRE oottt ettt ettt b e bttt b b e teere et et e beereeab e b ebeetee st enreeeraeenreas 104
2175 TIMES ettt ettt ettt et ettt a et b e b e bt et et e b e teeneenneenteas 104
2176 TGET ettt ettt ettt et et et e b e et e et e e st e st e b e sb e et e e st enbebe e st e e st e enbeennseenreas 105
2177 TSET ettt ettt ettt ettt ettt et e b e e ae st e b e b e te e st e st e b e b e re e st e st ebeebeeseentensebeenteas 105
2178 TYPES oottt ettt ettt ettt b e e b e teeaa e b e teeteesa e b e beereere et enbareas 106
2179 VAL ettt ettt b e e bt e ae et et e b e ete e st et e beeheeaeententeas 106
2.1.80. WAIT ettt ettt ettt ettt et e et et e b e e b e e st esaessessaeseeseesbenseeseeseensansanseaseessenseenssesnseas 107

2. 18T WO ettt ettt b et at e b e bt ettt et e beere st e st e beeseesaessenbeereereentes 109
2.1.82. WITEEBD ...ttt ettt ettt et b et e ss st e b e sseebeesse b asseeseesnaneas 110
2.1.83. XOR ettt ettt b e et h et et e b et e ene et e b e bt e st et et e be st entenbeennbeenreas 110

3. Debug a BASIC program 111
4. BASIC Error Codes 113
5. Configuration fields 115
.1 SYS CONTIG it ettt e st e et e ta e e ta e e b e e e ae e e b e e aaeeraeereeanaeesaaeanns 115
IV G0 1Y BN Yol 1] o IR 118
5.3 TAG SECHON ettt e e e et e ettt et e e te e et e e etaeeetaeeeaeeeseeesseeesseeeseeeseeenes 121
5.3.1. Send on alarm NotfiICAtioON PATTEINSocoereecee e 124
5.3.2. Setting a Tag value, deleting a Tag and acknowledging an alarmccceee....e. 124

I U Y T T o TSRS 125
Revision 130
NS To] T 115y (o) 2O 130

Page 5/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 1
BASIC language definition

1. BASIC language definition

1.1. Infroduction

The program of the eWON is based on syntax close to the BASIC, with many specific
extensions.

This document is an evolution of the RG-002-0-EN-(Programming Reference Guide) but can
only be applied on Flexy devices running with a firmware strictly higher than v8.1s4.

All other eWONs (eWON CD, eWON Flexy with firmware <= v8.1s4) need to refer to the RG-
002-0-EN-(Programming Reference Guide).

BASIC Scripting is possible on the eWON thanks to the Basic IDE that can be found via the
Configuration > Basic IDE link.

1.2. Program flow

It is very important to understand how the eWON executes its program!

There's a difference between the storing and the execution of the program within the
eWON: the eWON has a program task that extracts BASIC requests from a queue and
executes the requests.

A request can be:

* Asingle command
example: MyVar=1

* Abranch to alabel
example: goto MyLabel

* Alist of commands (program block)

In the first case, the command is executed then the BASIC task is ready again for the next
request.

In the second case, the BASIC task goes to label MyLabel and the program executes until
the END command is encountered or until an error occurs.

Suppose the eWON has no program, and you create:

* An Init Section:

CLS
myVar = 0

Page 6/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

* A Cyclic Section:

FOR V% = 0 TO 10
myVar = myVar + 1

NEXT V%

PRINT myVar

* A custom Section called myNewSection:

myNewSection:
myVar = 0
PRINT “myVar is reset”

£ GWON Tag Setup System Setup 10 Server Config Main Menu @
i Users List BASICIDE
C—TT— st s et paoes —r
File Edit Window Search Run Debug
2+ g w4+ Q > Scheduler Execution Mode | | STOP Q@ I
outiine &
§ D @ 4 FOR V% =0 TO 10
+ 5 my\Var = myVar + 1
§ Cyclic Section 5 | NEXT V%
§ Init Section 2| PRINT myvar
D myNewSection 14 | CLS
15 myVar = @
myNewSection:
myVar = @

PRINT “myVar is reseted”

lllustration 1: BASIC code of the introduction

If you download the corresponding program.bas file using an FTP client, you will obtain the
following program:

rem --- eWON start section: MY NEW SECTION
rem --- eWON user (start)
MyNewSection:
MyVar = 0
PRINT "MyVar is Reset"
rem --- eWON user (end)
End
rem --- eWON end section: MY NEW SECTION
rem --- eWON start section: Cyclic Section

ewon cyclic section:
rem --- eWON user (start)

Page 7/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

FOR V%=0 to 10
MyVar=MyVar+l

NEXT V%

PRINT MyVar

rem --- eWON user (end)

End

rem --- eWON end section: Cyclic Section
rem --- eWON start section: Init Section
rem --- eWON user (start)

ewon init section:

CLS
MyVar = 0
rem —--- eWON user (end)
end
rem --- eWON end section: Init Section

As you can see, the code you have entered is present, but the eWON has added some
remarks and labels in order to allow edition and to provide program flow control.

For each section in the editor, the eWON has added an END statement at the end to
prevent the program from continuing to the next section. The example also shows that any
label is global to the whole program and should not be duplicated.

We can also see here that there is not correlation between the section name and the label
used in that section.

The section name is only a way to organize program listing during edition in the eWON.It can
contain spaces while the program labels can't.

When the program starts (click RUN from the web site for example), the eWON posts 2
commands in the Queue:

goto ewon_cyclic_section CYCLIC_SECTION
1 goto ewon_init_section INIT_SECTION

Table 1: BASIC Queue - 1

The eWON BASIC task will read the request in the queue that has the lowest index and will
execute it until an END is found or until an error occurs.

Page 8 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 1
BASIC language definition

The first command is "GOTO ewon_init_section". The following lines will be executed:

ewon init section:

rem --- eWON user (start)
CLS

myVar = 0

rem --- eWON user (end)
END

The END command on the last line will end the program and the BASIC task will check in the
queue for a new request:

1 goto ewon_cyclic_section CYCLIC_SECTION
Table 2: BASIC Queve - 2

The first available command is "goto ewon_cyclic_section", it will also be executed until the
END is found. When this END is executed the BASIC task will detect that the section it has just
executed was a CYCLIC_SECTION and it will post a new "goto ewon_cyclic_section" request
in the queue.

This is how the program is continuously executed forever while the BASIC is in RUN mode.

There are a number of actions that can be programmed to occur upon event, like
ONTIMER:

TSET 1,10
ONTIMER 1,"goto MyLabel"

Suppose you add the above lines in the INIT SECTION, it will start timer 1 with an interval of 10
seconds and program a "goto MylLabel" request when timer 1 ellapses.

What actually happens when the ONTIMER occurs is that the eWON posts the "gofo
MyLabel" request in the BASIC queue.

Page 92/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 1
BASIC language definition

goto MylLabel
1 goto ewon_cyclic_section CYCLIC_SECTION
Table 3: BASIC Quevue - 3
When the CYCLIC SECTION wiill be finished, the fimer request will be exiracted from the
queue and then executed. If the CYCLIC SECTION takes a long time to execute, then the

time can elapse more than once during its execution, this could lead to more timer action
to be posted in the queue:

goto MylLabel
goto MylLabel

N W NN O

goto MylLabel
goto ewon_cyclic_section CYCLIC_SECTION

p—

Table 4: BASIC Queue - 4

The BASIC queue can hold more than 100 requests, but if TIMER goes too fast or if other
events like ONCHANGE are used the queue can overflow, in that case an error is logged in
the events file and requests are dropped.

You can also see that the ONTIMER request is not executed with the exact precision of a
timer, depending on the current load of the BASIC when the timer elapses.

When an ASP block has to be executed for the delivery of a WEB page to a client, the ASP
block is also put in the queue

As an example, if ASP block contains the following lines:

3 FromWebVar = Varl1! PRINT
#0;TIME$
2 goto MylLabel

Page 10/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

1 goto ewon_cyclic_section CYCLIC_SECTION

Table 5: BASIC Queue - 5

If a request in the queue contains more than 1 BASIC line, what actually happens is the
following:

+ The block is appended to the end of the program as a temporary section:

ewon one shot section:
fromWebVar = Varl
PRINT #0;TIMES

END

The temporary label is called (goto ewon_one_shot_section).
* When the execution is done, the temporary section is deleted from the program.
As a consequence, we have the following:

* Any global variable, or label can be used in REMOTE.BAS or ASP blocks; you can call
subroutines in your ASP blocks and share common variables with the program.

+ |If asection is being executed when the ASP section is posted, all the requests in the
queue must first be executed. This may have an impact on the responsiveness of the
WEB site when ASP is used.

* When using ASP you would better group your blocks to avoid posting too many
different requests in the queue. By doing this you will reduce queue extraction and
BASIC context switches.

* If a big amount of ASP request (or long ASP request) is posted to the BASIC by the
WEB server, it may slow down normal execution of the BASIC.

» Sections are never interrupted by other sections: this is always frue, when a program
sequence is written, it will never be broken by another execution (of timer or WEB
request or anything else).

1.2.1. Character String

A character string can contain any set of characters. When creating an alphanumeric string
with a quoted string the * or " delimiter can be used

"abcd"
"abdc’
"abc‘def’ ghi "

The examples above show 3 valid quotes strings.

Page 11 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 1
BASIC language definition

A character string can be stored either in an alphanumeric type variable, orin an
alphanumeric variable array.

1.2.2. Command

A command is an instruction that has 0 or several comma (,) separated parameters.

There are 2 exceptions to the comma separator: PRINT and PUT.

GOTO Label

PRINT

CLS

SETSYS TAG, "name", "Power"
SETSYS TAG, "SAVE"

1.2.3. Integer

An integer is a number between -2147483648 and +2147483647. This number can be stored
in an integer variable. When a parameter of integer type is specified for a function or a
command and the variable past is of real type, the eWON automatically converts the real
value to an intfeger value.

When the expected value is of integer type and the past value is a character string, the
eWON generates an error.

1.2.4. Real

A Real number is a number in floating point representation of which value is between
-3.4028236 10E38 and +3.4028234 10E38. Value of this type can be stored in a variable of real
type or in an array of reals.

A Real number has approximately 7 significant digits. This means that conversion of a
number with more than 7 significant digits to real will lead to a lost of precision.

When a function expects a real number and an integer is passed, the eWON automatically
converts the integer into a real value. If the function waits for a real and a character string is
passed, the eWON generates an error.

eWON uses IEEE 754 single precision representation (32 bits).

So the fraction is coded on 23 bits, which represents about 7 significants digits. But in the
ViewlO page the values are only displayed with 6 digits. If you use the Tag in Basic Scripting
you will find the 7 significant digits.

1.2.5. Alphanumeric character

An alphanumeric character is one of the ASCIl characters. Each ASCIl character has a
numerical representation between 0 and 255.

Page 12 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

The ASCII basic function returns the ASCII code of a character, and the CHR$ function
converts the ASCIl code to a string of 1 character.

1.2.6. Function

A function is a BASIC command having 0 or several parameters and returning a result that
can be of integer, real or string type.

ASCII "HOP"
GETSYS TAG, "NAME"
PT

1.2.6.1. Function declaration
To declare a function, you need two keywords:

* FUNCTION
It is used to start the function definition and is followed on he same line by the function
name

« ENDFN
It is used to end the function definition

* Example

FUNCTION my function // function definition begins
PRINT “my string”
ENDEN

1.2.6.2. Function return value

You specify the function return value using the following function name convention:
» |f your function returns an integer: Function my_function%
« If your function returns a string: Function my_function$
» If your function returns a float: Function my_function

To specify the return value of a function, an implicit variable is created automatically based
on your function name. When your function exits, the return value is the last value of this
variable.

FUNCTION my function
$my function = 1
Smy function = $my function + 1
PRINT “my string”

Page 13/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 1
BASIC language definition

ENDEN

This example prints “my_string” in the console but the return value will be 2.

1.2.6.3. Keyword “return” inside functions

The keyword “return” can be used at any place inside a function in order to end it.

FUNCTION my function
IF (global var%=1) THEN
$my function = 1.0
RETURN
ENDIF
Smy function = 0.0
ENDEN

The current value of the “"RETURN” ($FunctionName) will be returned just as if we reached
the ENDFN.

1.2.6.4. Function parameters

Parameters can be defined and applied to a function. These parameters need to be typed
(same way as functions).

Properties of these parameters:
+ Parameters are put between parenthesis and separated by a coma.
* Parameters are, by default, passed by value.
* Parameters type is deduced by the naming convention:
+ '$' at the end for string
* '%" at the end for integer
* nothing at the end for float
» Parameters are local variables in the function scope.
* These function parameters don't exist outside the function.

» To clarify this distinction with standard variables: every parameter variable begins with
'$' in the declaration and inside the function. This allows you fo manipulate global and
local variable with the same name without messing up.

* Example

Page 14 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 1

BASIC language definition

FUNCTION my function (Sparaml, S$param2%, Sparam3S$)
Smy function = $param2% + Sparaml + 1

ENDFN

PRINT @my function (3, 3, “3”)

1.2.6.5. Function call

To call a function, the '@' character precedes the function name and the parameters
values are put between parenthesis. If there is no parameters, parenthesis can be omitted.

FUNCTION my function (Sparaml)
PRINT “call of [my function] with param [”;$paraml;”]
ENDFEN

”

FUNCTION my function2 ()
PRINT “my function2 ()”
ENDEN

FUNCTION my function3
PRINT “my function3()”
ENDFEN

@my function (3)
@my function2 // call of a function without parenthesis nor parameters
@my function3() // call of a function without parameters

Pay attention to float and integer parameters, if a float is given as an integer parameter (or
the opposite), an implicit cast will occur.

FUNCTION my function (Sparaml%)
PRINT “call of [my function] with param [”;$paraml;”]
ENDFEN

”

@my function(3) // OK
@my function(3.4) // KO

1.2.6.6. Passing arguments by reference
By default the parameters are passed by value.

This means that side effects can't be executed. But sometimes, side effects are useful (i.e: a
function that returns 3 values).

If the parameter is preceded by '@', they will be passed by reference. It can then be used

Page 15/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

as a normal parameter inside the function.

The only difference compared to a normal parameter (passed by value) is that all changes
made inside the function will be visible outside this function.

* Example

FUNCTION my function (€$paraml, @Sparam?2,@$param3$)

Sparaml = Sparaml * 2
Sparam2 = Sparam2 * 2
Sparam3$ = "my function string"
ENDFEN
vl = 1.5
v2% = 2
v3$ = "my string"

@my function(vl, v2%, v3$)

PRINT v1 // Prints 3.00

PRINT v2% // Prints 4

PRINT v3$ // Prints my function string

1.2.6.7. Recursive function call

A function can be called inside an already existing function.

* Example

FUNCTION exp ($x, $n)
IF ($n = 1) then

Sexp = S$x
ELSE
IF ($n mod 2 = 0) THEN
Sexp = Qexp(Sx * S$x, $n / 2)
ELSE
Sexp = $x * @exp(S$x * Sx, ($n - 1) / 2)
ENDIF
ENDIF
ENDEN

PRINT @exp (3, 3)

1.2.7. Label

To use the GOTO and GOSUB commands, you need to define LABELS.

A label is a name beginning a line and ended by a colon ‘:'. The label must not have any
space character.

The GOTO/GOSUB instruction use the Label name without the colon as parameter.

Page 16 /130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

MyLabel
GOTO “MyLabel”

1.2.7.1. Local label

Sometimes, it's useful to have labels only inside a function to ease the flow conftrol, but
without polluting the name spaces of the program.

To solve this, local labels can be defined in functions.

* Syntax

$S1:
e Slisthe label name

A 'GOTO' can now be used inside the function to move to this label. Outside the function,
this label doesn't exist.

* Example

FUNCTION test label () :

Sa% =1

GOTO Sexit

$a% = 2

Sexit:

Stest label = $Sa%
ENDFEN

PRINT @test label() // Prints 1

1.2.8. Operators priority
When these operations appear in expressions, they have the following priority:
* Bracket terms: maximum priority
+ All functions except NOT and - (inversion)
* Inversion of sign -
« *, /,N\, MOD (modulo function)
o« 4 -
¢« =,>,<,<=,>=, <>
« NOT, BNOT ¢« AND, OR, XOR: minimum priority

The expressions are ordered by decreasing order of priority.

Page 17 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 1

BASIC language definition

- Note -

N operator is the Power operator
i.e.; 2N4 = 2%2%2%2

« See also

“NOT” on page 69, “BNOT"” on page 27, “AND"” on page 25, YOR"” on page 84, “XOR"” on
page 110, “MOD"” on page 68

1.2.9. Type of Variables

Variables typed as Integer or as String can be defined with a long name. Long name
variable are also applicable on Array (ex. : DIM arrayOfString(25,80)

Variable names are case insensitive (myint% and MyInt% are the same variable).

1.2.9.1. Integer variable

* Syntax
abcdef%

* The name of the variable is followed by the "%" letter to indicate that it is an integer
variable. An integer variable can contain a number of type integer.

* Example

my variable% = 1 // unlimited number of variables
DIM arrayOfString(25,80) // unlimited number of array of strings DIM A(25,80)
DIM arrayOfFloat (25,80) // unlimited number of array of floats

1.2.9.2. Real variable

* Syntax
abcdef
» abcdefis the name of the variable that can contain up to 200 characters.
Variable names are not case sensitive: AbCdEf and ABCDEF represent the same variable.

The variable name can only contain the letters "a" to "z"; all other characters are not
allowed.

The variable name can contain alphabetical characters, numbers and "_" underscore, but
name must begin with an alphabetical character.

Page 18 / 130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

A real variable can contain a real number.

Others characters are not allowed.

MyVar = 12.3 (valid)

My Var = 12.3 (invalid)
My Var = 12.3 (valid)
Varl = 12.3 (valid)
lvar = 12.3 (invalid)

1.2.9.3. Alphanumeric string

* Syntax
abcdef$

The name of the variable is followed by the "$" letter to indicate that it is a string. A string can
contain any number of characters. Its size is modified each time the content of the variable
is modified.

It is possible to address parts of a string with the TO keyword:

A$(4TO 10) returns a string with chars 4 to 10
A$(4 TO) returns a string with character 4 to end of
string
A$(4 TO LEN(AS)) same result

1.2.9.4. Characters arrays
The number of dimensions is only limited by the memory size of the BASIC.

When the DIM command is called, the array is created and replaces any other DIM or
variable existing with the same name. To erase an array you can either use the CLEAR
command that erases all variables, or change the dimension of the array to 1 element with
another call to DIM if you don't want to clear everything but need to release memory.

An array of which name is a$(E1,E2,E3) and an alphanumeric variable of which name is a$
can exist simultaneously. A characters array contains E1*E2*E3 *... characters.

* Syntax [Command]
DIMa$(El [E2 [, E3 [.....]]])

a$ is the name of the variable array created, its name only contfains one active character

of "a" until "Z". E1 is the number of characters for the first dimension. E2, E3, E4 are optional
and are present if the array must have 2, 3, 4,...dimensions.

DIM A$(10,20)
DIM Z(6)

Page 19 /130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK Chapter 1

BASIC language definition

A$(4, 37O 3) same kind of access with arrays

1.2.9.5. Real arrays

When the DIM command is called, the array is created and replaces any existing array with
the same name. To erase an array you can either use the CLEAR command that erases all
variables, or bring back the dimension of the array to 1 element if you don’t want to clear
everything but need to release memory.

In order to assign a value, type a(x, y, z)=value.

An array of which name is a(E1,E2,E3) and a real variable of which name is a CAN exist
simultaneously. A real array contains ET*E2*E3 *... reals.

* Syntax [Command]
DIMa(ET [, E2 [, E3[....]]])
a is the name of the array variable created, its name contains one character from "a" to "z".

E1 is the number of real for the first dimension. E2, E3, E4 are optional and are present if the
array must have 2, 3, 4,... dimensions.

The number of dimensions is only limited by the BASIC memory size.

DIM d(5,5)
d(1,6)=6

1.2.9.6. Local Variables

Local variables are used to define variables visible only in the function scope.

The local variable needs to be preceding by the '$' character inside the function.

* Example
FUNCTION a ()
Sb = 3 // local variable b
Sa = Sb + 3
ENDFEN
exec:

print @a() // here, Qa() exists, but not S$b.

1.2.10. TagName variable

* Syntax
TagName@

Page 20/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 1

BASIC language definition

TagName is the name of the Tag. Adding the ‘@’ after the Tag name allows direct access
to the Tag value. This syntax can be used for reading or writing to the Tag.

* Example

Tagl@ = 25.3
Tag2@ = TaglQ
IF (Tag3@>20.0) THEN ..

Only in some cases it is useful to use the GETIO or SETIO commands in order to build the Tag
name in the program (to perform some repetitive operations or if a Tag name begins with a
number, it cannot be accessed in Basic using the @ syntax, instead the GETIO, SETIO
function must be used).

FOR i1%=1 to 10

AS = "Tag"+STRS (i%)
SETIO AS,i%
NEXT 1%

1.2.11. Tag Access

All the Basic functions accessing Tags could reference the tag by its name, by its Index or by
its ID.

Tag name access Tagname String SETIO Set the value 23.5 in the Tag
"TAG1",23.5 named TAGI

Index access Negative Integer (or SETIO -2,23.5 Set the value 23.5 in the Tag at
0) the INDEX 2 (the third entry in
the var_lst.txt)

Tagld access Positive Integer (>0) SETIO 2,23.5 Set the value 23.5 in the Tag
with the ID=2

Table 6: Tag Access methods

If there are 6 Tags defined in the config, each Tag can be accessed by its index (-0 to -5) or
by its ID (the first item of a Tag definition when reloading the config.txt file, the ID of a Tag is
never reused during the live of a configuration until the eWON is formatted) or finally by its
name.

Page 21 /130 Programming Reference Guide | RG 006

FeWON

MACHINES CAN TALK Chapter 1

BASIC language definition

1.2.12. Limitations of the BASIC

« The eWON BASIC script is limited by the memory reserved for it (128 k). Users
have to share this memory space between the code and the data.

Page 22 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

2. List of Keywords

The commands and functions used to program the eWON are listed below in alphabetical
order.

The following commands or functions are available for any firmware version except
specifically notified otherwise.

2.1. Syntax convention

In the following keyword usage description, the following convention is used to represent
the parameters:

El, E2 Integer
S1,82 String
CA Character (if string passed, first charis
evaluated)

Table 7: BASIC keywords syntax convention

2.1.1. # (bit extraction operator)

* Syntax [function]
El #E2
* El=integer word
» E2 = bit position (0 to 31)

* Purpose

The # function is used to extract a bit from an integer variable (and only from an integer).
* Example

i%=5 :Rem Binary 0101
a%$=i%#0 :Rem a%=l1
b%=i%#1 :Rem b%=0
c%=i%#2 :Rem c%=1

Page 23 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

2.1.2. // (comment)

* Syntax [command]

// free text

* Purpose

This command enables the insertion of a line of comment in the program. The interpreter
does not consider the line.

* Example

PRINT a$%
// we can put whatever comment we want here
a%=2: REM Set a% to 2

» See also

“REM" on page 93

2.1.3. ABS

» Syntax [function]
ABS EI

* Purpose

The function returns the absolute value of E1. E1 can be a value or a Tag name. See also
“Operators priority” on page 8. If the value is negative, you have to add use ().

* Example

ABS (-10.4)

This would return ;: 10.4

2.1.4. ALMACK

» Syntax [function]
ALMACK TagRef, S2

« TagRefis the Tag reference (TagName, ID or -Index) See Tag Access on page 10

Page 24 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

+ S2is the UserName of the user that will acknowledge the alarm. If this field is the empty
field ™, then the "adm" login is assumed for acknowledgment.
* Purpose
The function acknowledges the alarm status of a given Tag. ALMACK returns error
“Operation failed (28)" if the tag is not in alarm.

* Example

ALMACK "MyTag", "TheMighty"

2.1.5. ALSTAT

* Syntax [function]
ALSTAT TagRef

* TagRefis the Tag reference (TagName, ID or -Index) See Tag Access on page
10

* Purpose

Returns the S1 Tag alarm status. The returned values are:

0 No alarm

1 Pretrigger: no active alarm but physical
signal active

2 In alarm
3 In alarm but acknowledged
4 Returns to normal but not acknowledged

Table 8: Values returned by the ALSTAT command

* Example

a% = ALSTAT "MyLittleTag"

2.1.6. AND

+ Syntax [Operator]

Page 25/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

ElT AND E2

* Purpose

Do a bit-wise AND between E1 and E2. Also have a look at the priority of the operators.

* Example
1 AND 2

Returns O

2 AND 2

Returns 2

3 AND 1

Retfurns 1

MyFirstTag@ AND 3

Keeps first 2 bits.

» See also

“Operators priority” on page 17, “OR"” on page 84, “XOR" on page 110

2.1.7. ASCII26

* Syntax [function]
ASCII CA

* Purpose

The function returns the ASCII code of the first character of the chain CA. If the chain is
empty, the function returns 0.

Page 26 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

* Example
a% = ASCII "HOP"
Returns the ASCIl code of the character H

- Seeadlso
“CHR$" on page 28

2.1.8. BINS

* Syntax [function]
BIN$ E1

* Purpose

The function returns a string of 32 characters that represents the binary value of E1. It does
not work on negative values.

* Example
AS= BINS 5
REM A$ is worth " 00000000000000000000000000000101 " after this affectation

+ See also
“HEX$" on page 56

2.1.9. BNOT

+ Syntax [function]
BNOTEI

* Purpose

This function returns the "bitwise negation" or one's complement of the integer E1.

* Example

Page 27 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

print BINS (b%)
Will display TTTTTTTTTTTTTTITTITTT1111111111010

» See also

“Operators priority” on page 17

2.1.10. CFGSAVE

* Syntax [Command]
CFGSAVE

* Purpose

Writes the eWON configuration to flash. This command is necessary after SETSYS command
on SYS, TAG or USER records because using SETSYS will modify the configuration in memory.
The modification will be effective as soon as the SETSYS XXX,"save" (where XXX stands for SYS,
USER or TAG), but the config is not saved to the eWON flash file system.

* Seedlso
“GETSYS, SETSYS” on page 47

2.1.11. CHRS

» Syntax [Function]
CHR$ EI

* Purpose

The function returns a character string with only one character corresponding to the ASCII
code of E1. E1 must be contained in the 0..255 range.

* Example
AS= CHRS 48

A$ is worth "0" after this affectation

B$=CHRS (getio (MyTag))

Page 28 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

If MyTag=32, then B$ will hold one space.

+ See also
“ASCIIT30" on page 26

2.1.12. CLEAR

* Syntax [Command]
CLEAR

* Purpose

Erases all variables from the eWON. All DIM are erased. This command cannot be canceled.

2.1.13. CLOSE

* Syntax [Command]
CLOSE I

* 11is the file number (1-8)

* Purpose

This command closes the file with file number I1. If the file is opened for write, it is actually
written to the flash file system. The function can be called even if the file is not opened.

» See also

“EOF” on page 33, “GET” on page 41, “OPEN" on page 79, "PUT"” on page 87

2.1.14. CLS

* Syntax [Command]
CLS

* Purpose

This command erases the virtual screen of the eWON, visible in the Script control page.

+ See also
“PRINT - AT” on page 85

Page 29 / 130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK
Chapter 2

List of Keywords

2.1.15. DAY

» Syntax [Function]
DAY EI] /S
* Elisadateininteger format (number of seconds since 1/1/1970)
+ Slisadatein String format ("18/09/2003 15:45:30")

* Purpose

This function returns an integer corresponding to the value of the day of the month (1--31)
that matches a defined time variable. REM: Do not call the function with a float variable of
value (or this would result to error "invalid parameter").

* Example

a$
a%

TIMES
DAY a$

b% = getsys prg,"TIMESEC"
a% = DAY b%

» See dlso
“DOW" on page 31, “DOY" on page 32, “MONTH" on page 68, “WOY" on page 109

2.1.16. DEC

» Syntax [Function]
DEC S1
+ Slisthe string to convert from HEX to DEC

* Purpose

This function returns an integer corresponding to the hexadecimal value of parameter. The
string is not case sensitive (a023fc = A023FC). The string can be of any length.

* Example

AS= HEXS (1234)
I% = DEC (AS)

Page 30/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

Now, 1% = 1234

» Seeadlso
“"HEX$" on page 56

2.1.17. DIM

* Purpose

The DIM function permits to create variables of array type. Two types of array are available:
the characters arrays and the real arrays.

See also:

“Type of Variables” on page 18

2.1.18. DMSYNC

» Syntax [Function]
DMSYNC

* Purpose

The command has no parameter and will trigger a Data Management synchronisation. If
the Data Management has been configured on the eWON, this command will send the
historical data to the Data Management system.

2.1.19. DOW

» Syntax [Function]

DOWEI /SI
* Elisadateininteger format (number of seconds since 1/1/1970)
+ Slisadate in String format ("18/09/2003 15:45:30")

* Purpose

This function returns an integer corresponding to the value of the day of the week (0--6;
Sunday = 0) that matches a defined time variable. REM: Do not call the function with a float
variable of value (or this would result to error "invalid parameter”).

* Example

Page 31 /130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK Chapter 2

List of Keywords

as$S = TIMES
a% = DOW a$

b% = getsys prg,"TIMESEC"
a% = DOW Db%

» Seedlso
“DAY" on page 30, “DOY"” on page 32, “MONTH"” on page 68, “WQOY" on page 109

2.1.20. DOY

» Syntax [Function]
DOYET / S1
* Elisadateininteger format (hnumber of seconds since 1/1/1970)
+ Slisadate in String format ("18/09/2003 15:45:30")

* Purpose

This function returns an integer corresponding to the value of the current day in the year (0-
365) that matches a defined time variable. REM: Do not call the function with a float
variable of value (or this would result to error "invalid parameter”).

* Example
a$S = TIMES
a% = DOY a$

o
o\
Il

getsys prg, "TIMESEC"
= DOY Db%

[¢])
o\
|

+ See also
“DAY" on page 30, “DOW" on page 31, “MONTH" on page 68, “WOY" on page 109

Page 32/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

2.1.21. DYNDNS

+ Syntax
DYNDNS

* Purpose

The command has no parameter and asks a NO-IP dynamic PPP IP address update to the
Dynamic DNS server you have set in Publish IP address Configuration page. It will be used to
synchronize a Dynamic DNS server such as No-IP with the eWON PPP IP address.

2.1.22. END

+ Syntax [Command]
END

* Purpose

Indicates the end of the program. This command can also be used to stop the execution of
a section. If the program is in RUN mode, this command will suspend the execution until
another section is ready to run (ONCHANGE, CYCLIC etc.).

* Example

PRINT " START "
END
PRINT " SUB "

» See also
“HALT" on page 55

2.1.23. EOF

* Syntax [function]
EOFEI

* Elisanumber (1-8) corresponding to a /usr file or an ExportBlocDescriptor.

* Purpose

Returns 1 when end of file is reached. EOF always returns 1 for files opened for write. EOF
works only with OPEN “file:..."” or OPEN “exp:..."” FileStream.

* Example

Page 33/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

PRINT "open file"
OPEN "file:/usr/myfile.txt" FOR TEXT INPUT AS 1

ReadNext :

IF EOF 1 THEN GOTO ReadDone
AS = GET 1

PRINT AS

GOTO ReadNext

ReadDone:
PRINT "close file"
CLOSE 1

+ Seealso
“CLOSE” on page 29, "GET" on page 41, "OPEN" on page 79, “PUT" on page 87

2.1.24. ERASE

* Syntax [Command]

ERASE Filename | Keyword

* Purpose

Erase the specified file in the /usr directory. That means this command will not work for a
different directory than the "/usr" directory. Omitting "/usr/" before the filename will result to
a syntax error. The file and directory names are case sensitive.

* Example
ERASE "/usr/myfile.shtm"

In order to erase some root files, some special keywords have been added.

ERASE “#ircall” To erase the ircall.bin file, 57
then all historical logged
data
ERASE “#events” To erase the events.ixt file, 5.7
the diagnostics file.
ERASE “#hst_alm” To erase the hst_alm.txt file, 5.7

Page 34 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2
List of Keywords

the alarms historical file.

ERASE “#usr” To erase (and formait) 6.2
completely the "/usr"
directory/partition

ERASE “#sys” To erase (and format) 6.2

completely the "/sys"
directory/partition

Table 9: Special keywords for ERASE command

» See also
“RENAME" on page 93

2.1.25. FCNV

+ Syntax [function]
FCNV S1,EType[ESize,SFormat]
+ Slisthe string to be converted.
* EType is the parameter determining the type of conversion.
» ESize is the size of the string to convert (can be shorter than the entire S1).

« SFormat is the format specifier for the conversion.

* Purpose

Converts a string to a number (float or integer). The return value can be an IEEE float, an
Infeger, a CRC16, a LRC. The type of conversion is determined by the EType parameter.

1 convert string (MSB first) to Float

2 convert string (LSB first) fo Float

5 compute the CRC16 on string and return an Integer
6 compute the LRC on string and return an Integer

0 convert string (MSB first) to Integer

p—

11 convert string (LSB first) to Integer
20 convert string to a Float using a SFormat specifier

30 convert string to an Interger using a SFormat specifier

Page 35/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

Etype value | Conversion type

40 convert time as string into time as Integer

Table 10: Etype of FCNV command

+ See also
“SFMT"” on page 98

2.1.25.1. Convert from an IEEE float representation

The IEEE float representation use four bytes (32 bits).

sign bit B bits) 23 bits)
\I/I exponent : mantissa |
ojoj1p1gtj1j1jojojoj1joy =0.15625
31 30 23 22 (bit index) 0

lllustration 2: Conversion to an IEEE float
The string could be LSB first:

AS = SFMT FloatNum, 1

This will convert FloatNum to a string holding the IEEE representation with MSB first

AS (1) = MSB (Exponent+ Sign)
AS(4) = LSB (Mantissa LSB)
or MSB first:

AS$S = SFMT FloatNum, 2
This will convert FloatNum to a string holding the IEEE representation with LSB first

AS (1) = LSB (Mantissa LSB)

Page 36 /130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK
Chapter 2

List of Keywords

AS (4) = MSB (Exponent+ Sign)

* Example

ieee = -63.456
AS = SFMT ieee,1
rem a$(1)=194 as$(2)=125 a$(3)=210 as (4)=242

AS = SFMT ieee, 2
rem as$(1l)=242 a$(2)=210 a$(3)=125 as(4)=194

2.1.25.2. Compute CRC16 of a string
Compute the Cyclic Redundancy Check (CRC) of the string.

CRC-16 uses the Polynomical 0x8005 (x'¢+ x'> + x? + 1) with an init value of OxFFFF

* Example

AS="My string"
c% = FCNV AS,5
print c% : rem c% = 51608

2.1.25.3. Compute LRC of a string
Compute the Longitudinal Redundancy Check (LRC) of the string.

The LRC computation is the sum of all bytes modulo 256.

* Example

AS="My string"
c% = FCNV AS, 6
print c% : rem c% = 125

2.1.25.4. Convert from an Integer representation
Convert a string containing several bytes (1 to 4) in an Integer value.

The integer representation could be LSB (Least Significant Byte) first or MSB (Most Significant
Byte) first.

The ESize parameter is required!

Page 37 /130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK

It is the size of the string to convert (it canbe 1, 2, 3 or 4).
FCNV AS$, 10,4
This will convert A$(1 to 4) to an integer representation with MSB first

AS (1) = MSB

A$ (4) = LSB

FCNV AS$, 10,2
This will convert A$(1 to 2) to an integer representation with MSB first

AS$ (1) = MSB

AS$(2) = LSB

FCNV AS, 11,4
This will convert A$(1 to 4) to an integer representation with LSB first

AS$ (1) = LSB

AS (4) = MSB

FCNV AS, 11,2

This will convert A$(1 to 2) to an integer representation with LSB first

AS (1) = LSB
AS (2) = MSB
* Example

Chapter 2
List of Keywords

Page 38 / 130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK

Chapter 2
List of Keywords

AS=CHRS (1) +CHRS (4) +CHRS (2) +CHRS (0)
a%$=FCNV AS$,10,2

b%=FCNV AS$,11,2

PRINT a% : rem a% 260

PRINT b% : rem b% = 1025

c%=FCNV AS$,10,3

PRINT c% : rem c% = 66562
c%=FCNV AS$,10,4
PRINT c% : rem c% = 17039872

2.1.25.5. Convert string to a Float using a SFormat specifier

Convert a string with a float number (ex: A$="153.24") to a Float variable using a Format
specifier.

* The ESize parameter is required.
It is the size of the string to convert (use 0 to convert the whole string).

* The SFormat parameter is required.
tis the format specifier string and must be "%f".

* Example

float 0 = FCNV "14.2115",20,0,"%£"

float 1 = FCNV "14.2115",20,4,"%f"
rem float 0==14.2115 float 1==14.2

float 2 = FCNV "-142.1e3",20,0,"%£"

2.1.25.6. Convert string to an Interger using a SFormat specifier

Convert a string with an integer number (ex: A$="154" or A$="FOE1") to an Integer variable
using a Format specifier.

* The ESize parameter is required.
It is the size of the string to convert (use 0 to convert the whole string).

» The SFormat parameter is required.
It is the format specifier string and can be:

* "%d" if the string holds a decimal number.
* "%0" if the string holds an octal number.

* "%x" if the string holds an hexadecimal bumber.

* Example

Page 39 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

a% = FCNV "1564",30,0,"%d" : rem a%=1564
a% = FCNV "1564",30,2,"%d" : rem a%=15
a% = FCNV "FE",30,0,"%x" : rem a%=254

a%$ = FCNV "11",30,0,"%0" : rem a%=9

2.1.25.7. Convert time as string into time as Integer

Convert a String holding a time in the format “dd/mm/yyyy hh:mm:ss” (ex: “28/02/2007
16:48:22") into an Integer holding the number of seconds since 01/01/1970 00:00:00.

- Important -

Float value have not enough precision to hold the big numbers used to represent seconds
since 01/01/1970, this leads to lost of precision during time conversion.

* Example
a%$ = FCNV "24/04/2007 12:00:00",40 : rem a%=1177416000
a%$ = FCNV "01/01/1980 00:00:00",40 : rem a%=315532800
* Seedlso

“TIME$"” on page 104

2.1.26. FOR NEXT STEP

* Syntax

FOR a% =EI TO E2 STEP E3
NEXT a%

+ a%is aninteger variable used as a counter.

* EI, E2, E3 are integer values/variables

* Purpose

The instructions between the lines containing the FOR and the NEXT are executed until a% =
E2. The loop is always executed at least 1 time, even if E1 is greater than E2.

During first loop execution, a% equals E1.
FOR and NEXT cannot be on the same line of program.

Do not exit the FOR/NEXT loop by a GOTO statement because, in this case, after a certain

Page 40/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

number of executions, the memory of the eWON is full.

* Example

FOR a%=10 TO 20 STEP 2
PRINT a%
NEXT a%

2.1.27. GET

The GET command works completely differently if the file is opened in Binary mode or in Text
mode.

The file syntax has been extended in version 3 of the eWON to allow access to the serial port
and to TCP and UDP socket.

The command description describes operation for
* /usr (Text and Binary modes)
+ COM (always binary)
» TCP-UDP (always binary)

2.1.27.1. /usr in Binary mode

» Syntax [function]
GETEI, E2/S1
* Elisthe file number (1-8)
* E2isthe number of bytes to read from the file
Or

« IfST1isused, the function returns file specific information.

S1 Value Return information

“SIZE" Total file size

Table 11: Value /usrin Binary Mode

* Purpose

Returns a string of char with the data read. Moves the file read pointer to the character
following the last character read (or to end of file).

o Get 1, 1 willreturn max 1 char
e Get 1, 5000 will return max 5000 char

Page 41 /130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* Get 1 without param is equivalent to Get 1,2048
* Example

OPEN "file:/usr/myfile.bin" FOR BINARY INPUT AS 1
A$ = GET 1,10

REM read 10 bytes

PRINT AS$

CLOSE 1

2.1.27.2. /usr in Text mode

+ Syntax [function]
GETEI][, E2]
* Elisthe file number (1-4)

* E2 optional: buffer size.
When a datais read from the file, it must be read in a buffer to be interpreted. The
buffer must be able to hold at least the whole item and the CRLF at the end of the
line if the item is the last of the line.
The default buffer size is 1000 bytes, if your file contains items that may be bigger than
1000 bytes, you should specify this parameter, and otherwise you only have to
specify the E1 parameter: file number.

* Purpose

Returns a STRING or a FLOAT according to the data read from the file. If the data read is
surrounded with quotes, it is returned as a STRING, if the data read is not surrounded with
quotes, it is retfurned as a FLOAT.

The function never returns an INTEGER. The function moves the file read pointer to the next
item. For string items, the ' quote or " quote can be used. The separator between items is the
;' character. When a CRLF (CHR$(13)+CHR$(10)) is found it is also skipped.

* Example

REM file content
123;"ABC"
1.345;"HOP"

DIM AS$(2,20)

DIM A(2)

OPEN "/myfile.txt"
FOR TEXT INPUT AS 1
I%=1

ReadNext:
IF EOF 1 THEN GOTO ReadDone
A(I%) = GET 1
AS$(I%) = GET 1

Page 42 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

I%$ = I%+1
GOTO ReadNext
ReadDone:
CLOSE 1

2.1.27.3. COM - Binary mode

» Syntax [Function]

GETEIE2
CLOSE

« El: File number

E2: maximum number of bytes to read from the serial port.

* Purpose
Returns a string with the data read from the serial port buffer.
If there are no data to read from the buffer the returned string is empty.

If E2 is specified and the buffer contains more than E2 bytes, the function returns with E2
bytes.

If E2 is specified and the buffer contains less than E2 bytes, then the function returns with the
content of the buffer.

The function always returns immediately.

- Note -

Attempting to USE a serial port used by an IO server is not allowed and refurns an error.

* Example

OPEN “COM:2,... AS 1”7
AS$S=GET 1,100
CLOSE 1

2.1.27.4. TCP/UDP in Binary mode

* Syntax [function]
GETEI, E2

Page 43 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* Elis the file number returned by OPEN.

* E2: maximum number of bytes to read from the socket.

* Purpose

Returns a string with the data read from the TCP/UDP socket. If there are no data to read
from the buffer the returned string is empty.

If E2 is specified and the buffer contains more than E2 bytes, the function returns with E2
bytes.

If E2 is specified and the buffer contains less than E2 bytes, then the function returns with the
content of the buffer. If the other party has closed the socket or if the socket is in error at the
TCP/IP stack level, the function exits with error (See *“ONERROR" on page 74)

The function always returns immediately.

+ See also
“CLOSE” on page 29, “"EOF" on page 33, “OPEN" on page 79, “PUT” on page 87

2.1.28. GETFTP

» Syntax [function]
GETFTP S1, 82 [,S3]
« Slisthe name of the source file (to retrieve on the FTP server)
+ S2isthe name of the destination file (to write on the eWON)

» S3 (optional) is the FTP server connection parameters.
If S3is unused, the FTPServer parameters from the General config page will be used.

* Purpose
Retrieves a file on an FTP server and copy it on the e WON.

The source filename can include a path (built with “/" or “\" depending of the FTP server).
As the destination filename is on the eWON, you must begin by a /" and can include a
path built with */".

The S3 parameters is as follow:
* [user:password@]servernamel:port][,option]

The option1 parameters is to force PassiveMode, put a value 1 as option1 parameter. If
omitted, option1=0, then eWON will connect in ActiveMode.

This command posts a scheduled action request for a GETFTP generation.

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled
action and allows tracking this action. It is also possible to program an ONSTATUS action that

Page 44 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

will be called when the action is finished (with or without success).

* Example

GETFTP "server file name.txt","/usr/ewon file name.txt"
GETFTP "server file.txt","/usr/ewon file.txt","user:pwd@ServerTP.com:21,1"
GETFTP "inst val.txt","/inst val.txt"

* Seedlso
“ONSTATUS” on page 77, “GETSYS, SETSYS” on page 47, “PUTFTP” on page 89

2.1.29. GETHTTP

» Syntax [function]
GETHTTP §1,52,583[,54]

¢ S1: Connexion Parameter
with the format : [user:password@]servername|[:pori]

* S2:file name to assign on the eWON
with the format : file name path

» S3: URI of the file on the HTTP
with the format : server absolute path of the file to be downloaded

* 54 (optional): "PROXY"

* Purpose

The GETHTTP command submit a HTTP GET request. It allows the download of a file (one per
GETHTTP command) using its URI.

When the function returns, the GETSYS PRG, returns the ID of the scheduled action and
allows tracking of this action. It is also possible to program an ONSTATUS action that will be
called when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the eWON will perform the GETHTTP
through a Proxy server. The eWON will use the Proxy server parameters configured in System
Setup / Communication / VPN Global.

* Example

Download without HTTP basic authentification:

GETHTTP "10.0.100.206","/usr/filenamel.txt","/filenamel.txt"

When no port is specifed, HTTP port is 80.

Page 45/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords
Download with basic authentification and configured HTTP port:

GETHTTP "adml:adm2@www.ewon.biz:89","/usr/filenamel.txt","/filenamel.txt"

HTTP server is supposed to listen on port 89 at address www.ewon.biz (adm1 is used as login.
adm?2 is used as password).

Download without HTTP basic authentification through Proxy serveur:

GETHTTP "10.0.100.206","/usr/filenamel.txt","/filenamel.txt", "PROXY"

+ Seealso
“ONSTATUS"” on page 77, "GETSYS, SETSYS"” on page 47, “PUTHTTP"” on page 90

2.1.30. GETIO

+ Syntax [function]
GETIO S1

« SlistheTagRef which refers to the Tag reference (TagName, ID or -Index)
See Tag Access on page 21

Returns the value of the S1 Tag. This value is a FLOAT.

* Example

A = GETIO "MyTag"

A = GETIO 12 : rem if TagID =12

This function is equivalent to A = MyTag@

- Important -

The MYTAG Basic variable is distinct than the memory Tag "MYTAG".

» See also:

Page 46 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

“SETIO” on page 97

2.1.31. GETSYS, SETSYS

The GetSys and SetSys function are used to get or set some special parameters of the
eWON.

There are 5 types of parameters:

o Jomeren

PRG Program parameters like the time in milliseconds or the type of action
that started the program

SYS Edition of the eWON system parameters
COM Edition of the eWON communication parameters
USER Edition of the eWON users list

TAG Edition of the eWON Tag list

INF Information about eWON (debug counter,...)

Table 12: GETSYS & SETSYS parameters

Each group has a number of fields that can be read of written.

2.1.31.1. PRG
ACTIONID After execution of a scheduled action like: SendSMS
SendMail PUtFTP SENDTRAP TCP/UDP Connect (see OPEN
command), the ACTIONID returns the ID of the action just
executed.
When the ONACTION event is executed, this ACTIONID is
stored in EVTINFO. Writing in this field is useful to read the
current value of an action.
ACTIONSTAT RO Current status of the action with ActionID given by

ACTIONID.
If ACTIONSTAT must be checked, ACTIONID must be
initialized first.
Possible values of ACTIONSTAT are:

* -l:in progress

+ -2:1D not found

* 0: done with success

» >0: finished with error = error code
The eWON maintains a list with the status of the last 20
scheduled actions executed. When more actions are

Page 47 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

EVTINFO

TIMESEC

MSEC

RUNSRC

PPPIP

WANIP

Page 48 / 130

RO

RO

RO

RO

R/W

RO

S/

Chapter 2
List of Keywords

executed, the older status is erased and its ACTIONSTAT
may return -2, meaning it is not available anymore

The value of this field is updated before executing the
ONXXXXX (ONSTATUS, ONERROR, efc.), see the different
ONXXXXX function for the meaning of the EVTINFO
parameter

Returns the time elapsed since 1/1/1970 in seconds.
(Useful for computing time differences)

Warning: when you assign this value to a float variable the
number is too big and rounding will occur. You should use
an integer variable (ex: a%) to store this value

Time in MSEC since eWON has booted Max value is
134217727 then it wraps to O

When program is started, the source of the execution is
given by this parameter:
+ 1: Started from the Web site ‘Script Control’ window
+ 2:Started by the FTP server because program has
been updated
+ 3:A'GO’ command has been executed from the
script
* 4: Automatic program start at eWON boot

This parameter returns the string corresponding to the
current PPP IP address.

When the eWON is offline, the value returned is "0.0.0.0".
When the eWON is online the value returned is the dotted
IP address allocated for the PPP connection.

The parameter can be written in order to disconnect the
eWON. The only value accepted when writing in this
parameteris O (setsys prg, "PPPIP", 0)

This parameter returns the string corresponding to the
current WAN IP address.

When the eWON is offline, the value returned is "0.0.0.0". If
no-ip has been called, then WANIP returns the IP returned
by no-ip, otherwise the actual physical WAN IP address
(PPP or Ethernet) is returned.

REMT: if getsys prg,"WANIP" is called in a ONWAN event it
is likely that if a no-ip request is scheduled through publish
ip address, it is not yet finished when the ONWAN is called.
REM2: getsys prg,"WANIP" returns the same value as getsys
prg,"PPPIP" if no-ip is not (yet) called and WAN interface is
on modem, BUT writing to WANIP does not close the WAN
connection like writing to PPPIP may close the PPP

Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

Field Name | Op. Type | Description

connection.

VPNIP RO S Currently allocated VPN ip address. If eWON is not
connected to VPN this is 0.0.0.0

TRFWD R/W S Transparent forwarding IP address. The parameter can be

used to write or read the routing parameter. The
parameter is only active when the PPP connection is

established
SERNUM R/W S Returns a string with the eWON serial number string

PRIOH R/W I Used for changing the script priority

PRION R/W I Used for changing the script priority

PRIOT R/W I Used for changing the script priority

RESUMENEXT R/W I Controls the OnError action. Possible values are a
combination of:
* 1:Resume Next mechanism is enabled

* 4: Do not execute ONERROR

» 8: Do not show error on virtual screen
This parameter is useful when testing the existence of a
variable, file or other.
Example: Testing the existence of a file can be done by
opening it and see if it generated an error. The Error result
is accessible through LSTERR

LSTERR R/W Contains the code from the last Basic error that occurred
(-1: no error).
See "BASIC Error Codes” on page 113
The LSTERR is automatically cleared (value -1) when an
end of section is reached (instruction END)
You can also write the value -1 on LSTERR to clear the error
(SETSYS PRG,"LSTERR" -1).

NBTAGS RO I Returns the number of tags defined in eWON.

SCHRST W I Clear all pending scheduled actions (except the action
currently ‘in progress’). Write only with the value 1 SETSYS
PRG,"SCHRST",1 When Scheduled Actions are cleared,
they have the status ‘Action Canceled’ (value 21613)

MDMRST W | Force an Hardware Modem Reset SETSYS PRG,"MDMRST", 1

ADSLRST W | Force an Hardware ADSL Modem Reset SETSYS
PRG,"ADSLRST", 1

Table 13: PRG group fields

Page 49 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

- Note -
Op. stands for Operation and contains 3 values : RO = Read Only, R/W = Read & Write and W =
Write
Type may contain 3 values : | = Integer, R = Real and S = String

2.1.31.2. SYS

The fields edited with this group are the one found in the config.ixt file under the section
System. The fields are described in the section "Error: Reference source not found".

2.1.31.3. COM

The fields edited with this group are the one found in the comcfg.txt. The fields are
described in the section "Error: Reference source not found". It is possible to tune the modem
detection too. See COM Section on page 118.

2.1.31.4. INF

This group holds all information data about eWON. All these fields are Read Only. The fields
displayed from this group are the one found in the estat.htm file.

2.1.31.5. TAG

The fields edited with this group are the one found in the config.txt file under the section
Taglist. The fields are described in the section "Error: Reference source not found".

See TAG Section on page 121.

2.1.31.6. USER

The fields edited with this group are the one found in the config.txt file under the section
Userlist. The fields are described in the section "Error: Reference source not found".

See User Section on page 125

2.1.31.7. Procedure

* A block must be loaded for edition with the SETSYS command and a special field
called "load" (SETSYS TAG,"load”, XXXXXXX). According to the source, this block will be
either the eWON system configuration, the eWON COM configuration, a Tag
configuration or a user configuration.

» Then each field of this configuration can be accessed by the GETSYS or SETSYS
commands. This edition works on the record loaded values but does not actually

Page 50 / 130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK

Chapter 2
List of Keywords

affect the configuration.

* When edition is finished, the SETSYS command is called with a special field called
"save" and the edited block is saved (this is only necessary if the record has
changed). At this fime, the record edited content is checked and the configuration is
updated and applied.

*+ The CFGSAVE command can be called to save the updated configuration to flash.

2.1.31.7.1. Recognized field values per group

The fields values are the same fields as those returned by the FTP get config.txt command.

* Syntax

GETSYS SSS, S1
SETSYS SSS, S1, 82 / E2

« SSSis the source block: PRG, SYS, TAG, USR - This parameter must be typed as is (it
could not be replaced by a string)! » S1 is the field name you want to read or modify.

* S1 can be the action "load" or "save"

« S2/E2is the value to assign to the field, of which type depends on the field itself
* Example

A% = GETSYS PRG, "TIMESEC"

REM Suppose Tag_ 1l exists and is memory Tag

SETSYS TAG,"load","Tag 1"

A$ = GETSYS TAG, "Name" : REM A$="Tag_1"

SETSYS TAG,"ETO","ewon actl@ewon.biz" : REM EmailTo field of Tag 1
SETSYS TAG,"save" : REM save data in the config => update Tag_ 1
SETSYS TAG,"Name","Tag 2"

SETSYS TAG,"save" : REM update or create Tag 2 with Tag 1l cfg

» See also

“CFGSAVE" on page 28, “Error: Reference source not found” on page Error: Reference
source not found

2.1.31.7.2. TAG Load

The TAG load case is particular because is allows to load a Tag defined by its name, its ID or
its Index.

If there are 6 Tags defined in the config, each Tag can be accessed by its index (0 to 5), its
ID (the first item of a Tag definition when reloading the config.ixt file, the ID of a Tag is never
reused during the live of a configuration until the eWON is formatted) or finally by its name.

Page 51 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2
List of Keywords

Method XXX Example Ex. Explanation

Param.

Tagname Tagname Setsys Tag,"load","MyTagName" Loads Tag with name

access MyTagName
Index access -Index Setsys Tag,"load",- 4 Loads Tag with index 4
Tagld access Id Setsys Tag,"load",50 Loads Tag with id 50

Table 14: SETSYS TAG, “load” examples

» See also

Tag Access on page 21

2.1.31.7.3. Extended syntax to access I0Server lists of parameters

* Generic Syntax

GETSYS SYS,"ParamName:SubParamName”
SETSYS SYS,”ParamName:SubParamName”,"NewValue”

* ParamName is the name of the whole field (form the config.ixt file).

* SubParamName is the sub-parameter (inside the ParamName) that you want to read
or modify.

* NewValue is the value to assign to the field.

» Specific I0OServer Syntax

GETSYS SYS,"10SrvData[lOServerName]:SubParamName”
SETSYS SYS,"IOSrvData[lOServerName]:SubParamName”,"NewValue”

» |OServerName is the name of the |IOServer you want to edit (form the config.txt file).

+ SubParamName is the sub-parameter (inside the IOSrvDatal...]) that you want to
read or modify.

* NewValue is the value to assign to the field.

* Purpose

Allows an easy access to sub-parameters contained in a parameter String (since firmware
5.652).

Previously, to modify the I0SrvData2 parameter from the example below, you have to
handle the whole string.

I0Srv0:EWON

Page 52 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2

List of Keywords

IOSrvl1 :MODBUS

IOSrv2:UNITE

IOSrv3:

IOSrv4:

IOSrv5:

IOSrv6:

I0OSrv7:

IO0Srv8:

IOSrv9:

IOSrvDatalO:MinInterval:10{MaxInterval:268435455JReverseCount:0

IOSrvDatal :ComPortNum: 1
IOSrvData?2:EnabledA:19PeriodA:10009GlobAddrA:0,254, 09EnabledB: 09EnabledC:09Co
mPortNum: 1Baudrate:192009Parity: 2JHWMode: 1{TwoStop: O0JUVER2:19DisDefTr:0
IOSrvData3:

IOSrvData4d:

IOSrvDatab:

IOSrvDatab:

IOSrvData7:

Now you can access directly the sub-parameter.

* Example

with Generic Syntax:

SETSYS SYS, "load"
AS$S = GETSYS SYS,"IOSrvDataZ2:GlobAddrA"
SETSYS SYS,"IOSrvDataZ2:GlobAddrA","0,254,0"

with Specific IOServer Syntax:

SETSYS SYS, "load"
AS = GETSYS SYS,"IOSrvData[UNITE]:GlobAddrA"
SETSYS SYS,"IOSrvData[UNITE] :GlobAddrA","0,254,0"

2.1.32. GO

+ Syntax [Command]
GO

* Purpose

Page 53 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

Start program execution (RUN). This is equivalent to clicking RUN in the script control window.

This command is mainly useful for remote eWON operation through the use of REMOTE.BAS
FTP tfransfer.

» Seedlso
“HALT" on page 55, “REBOOT” on page 92

2.1.33. GOSUB RETURN

* Syntax

GOSUB Label
Label:

Expression
RETURN

* Purpose

When the GOSUB line is executed, the program continues at "Label" line. Then the program
executes up to the RETURN line. The RETURN command modifies the program pointer to the
line immediately following the GOSUB Line.

- Important -

If the GOSUB line contains instruction after the GOSUB command, they won't be executed on
return.

It is possible to create a new section containing the Label. Sections are useful in order to
divide the program into smaller code snippets and help the reader to get a clear view of
the software.

At the end of every section there is an invisible END but jumps are possible from section to
section.

* Example

GOSUB NL3

PRINT " End "

END

NL3 : PRINT " Beginning "

Page 54 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

RETURN

REM Display " Beginning " then " End "
GOSUB NL3 :print "Never"

PRINT " End "

END

NL3 : PRINT " Beginning "

RETURN

REM Display " Beginning " then " End " => "Never" is never printed

2.1.34. GOTO

* Syntax [Command]
GOTO Label

* Purpose

The execution of the program continues to the line indicated by Label. The Label statement
cannot be empty

The GOTO command also allows starting the program without erasing all variables.

A string can be passed in a GOTO command.

* Example

GOTO Label
Print " Hop "
REM the program continues at line Label (Hop is not printed)

Label:
AS = “my label”
GOTO AS

2.1.35. HALT

+ Syntax [Command]
HALT

* Purpose

Stops program execution. This is equivalent to clicking STOP’ in the script control window. This
command is mainly useful for remote eWON operation through the use of REMOTE.BAS FTP

Page 55/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

tfransfer.

+ Seealso
“GQO" on page 53, “REBOOT” on page 92

2.1.36. HEXS

+ Syntax [function]
HEX$ E1

* Purpose

The function returns a chain of 8 characters that represents the hexadecimal value of the El
number.

* Example

a$= HEXS$ 255
REM AS$ is worth " O00OOOOFF " after this affectation

» See also

“BIN$"” on page 27

2.1.37. HTTPX

The Basic Script implemented in the eWON is capable of dealing with HTTP(S) request &
response.

2.1.37.1. REQUESTHTTPX

* Syntax
REQUESTHTTPX http[s]://S1, S2 [, S3 [, S4 [, S5 [, S6 [, S7]1]]]

* S1isthe Server
It is the URL of the targeted request. For example : “192.168.0.10" or
“www.example.com”
It is also part of the URL that constitute the Query string. For example: “service” or
“12345/controlzaxis=x&val=1"

* S2is the Method
[t's the REST API HTTP verb. This can be “Get”, "Post”, "Put”, “Patch”, "Delete”,

Page 56 / 130 Programming Reference Guide | RG 006

http://www.example.com/

eWON

MACHINES CAN TALK

Chapter 2
List of Keywords

“Options”, “Head", “Purge”

» $3 are the Headers (optional)
The headers the eWON sends through the request. For example
“ContentType=application/json&XRequest =test"

* $4is the Post-Data (optional)
The POST data can be either:

* separated by an ampersand “&" using the traditional QUERYSTRING format
[FieldName1=ValueNa mel] [&FieldNameX=ValueNa meX]*

* raw data
For example: "firstname=jack&lasthame=nicholson" or "{\"myData\":21}"

+ S5is the File-Data (optional)
String for FILE data separated by an ampersand using the traditional QUERYSTRING
format and having each value corresponding to an eWON ExportBlockDescriptor:
[FieldName1=ExportBlockDescriptorl]
For example: "pictures[]=[$dTEV$fnevents.ixt] &pictures[]=[$dtCF$fnconfig.ixi]"

+ Séis the File-Answer (optional)
The file name inside /usr/ folder where the answer needs to be stored.
For example: “/usr/myfile”

+ $§7is the Proxy (optional)
If the request should use a Proxy or not. Accepts “PROXY" or *" as value.

When File-Answer is empty or not specified :

» the result of the request is saved in a buffer in the memory. The information can then
be refrieved with the RESPONSEHTTPX command (cf. Infra).

+ there are three buffers: each buffer can handle a response body of max. 64KB. An
HTTP request error is produced if the response body is bigger than the max. size
allowed.

Whenever the POST-DATA field is specified without any FILE-DATA information, the default
content type header (if not specified in the HEADER field) is

'Content-Type: application/x-www—form-urlencoded; charset=IS0-8859-1"

When using a “multipart/form-data” content type, it isn't possible to set the boundary.

“Content-Type:multipart/form-data; boundary=-------- myseparator”

This would not be supported.

Page 57 / 130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK Chapter 2
List of Keywords

2.1.37.2. RESPONSEHTTPX

* Syntax
RESPONSEHTTPX S1 [, S2]

* S$1is the Parameter
Sending the info to retrieve. For example: “HEADER"”, “STATUSCODE",
“RESPONSE_BODY"

+ S2is the Specific-Header (optional)
Set a specific header to retrieve. This works only when S1 is set to “HEADER”

RESPONSEHTTPX is used to retrieve the information from a previous REQUESTHTTPX command.
Use the ACTIONID (parameter from the GETSYS PRG) to specify the request:

* RESPONSEHTTPX “HEADER”
returns all server headers with the format “"HeaderName: value” separated by CR+LF
(ascii 13dec then 10dec).

* RESPONSEHTTPX “HEADER”, “Specific-Header”
returns only “Specific-Header: value” (or an empty string if not found”)

o RESPONSEHTTPX “STATUSCODE"
returns the request status code (200", “404", etc) as a string

e RESPONSEHTTPX “RESPONSE-BODY”
returns the response body as a string that can contain NULL characters.

* Example

request:

REQUESTHTTPX "http://www.example.com/coucou.php","GET”
actionID%$ = GETSYS PRG,"ACTIONID"

PRINT "request actionid is "; actionID%

END

onkEvent:
eventId% = GETSYS PRG,"EVTINFO"
IF (eventId% = actionID%) THEN
SETSYS PRG, "ACTIONID", eventId%
stat$ = GETSYS PRG, "ACTIONSTAT"
IF (stat%$ = 0) THEN
GOTO response
ELSE
PRINT "Error (ERROR = "+Str$ (stat%) + ")"
ENDIF
ENDIF
END

Page 58 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

response:
a$ = RESPONSEHTTPX "STATUSCODE"

PRINT "***status: "; a$

a$ = RESPONSEHTTPX "HEADER"

PRINT "***all headers: "; a$

a$ = RESPONSEHTTPX "HEADER", "Server"
PRINT "***server header: "; a$

a$ = RESPONSEHTTPX "RESPONSEBODY"
IF (Len(a$) < 1000) THEN

PRINT "***response body: "; a$
Else

PRINT "***response body size: "; Len(a$)
ENDIF
END

2.1.38. IF, THEN, ELSE, ENDIF

This sequence of commands now supports two different syntaxes: the short IF syntax and the
long IF syntax.

2.1.38.1. Short IF Syntax

* Syntax
IF N THEN EXPRESSION1 [ELSE EXPRESSIONZ2 [ENDIF]]

* Purpose
The condition is the result of an operation returning an N integer.

* IfNis O, the condition is considered as false and the eWON executes the following
line or to the ELSE "expression2" if present.

* [f Nis different from 0, the conditfion is considered as true and the eWON executes
"expression1".

o If more than one instruction has to be executed, separate them with "',
o |If Nis an expression or a test, use ().

The ELSE Expresion?2 is optional and the finishing ENDIF is also optional.

- Important -

The short IF syntax is used as soon as an item is found after the THEN statement. Even putting a
REM statement on the IF N THEN line will make the eWON consider it as a short IF statement.

Page 59 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

2.1.38.2. Long IF Syntax

* Syntax

IF N THEN
Expression|
ELSE
Expression2
ENDIF

The ELSE Expression2 is optional but ENDIF is mandatory.

You can mix short and long IF syntax in your code, but don't forget that anything typed after
the THEN statement will lead to a short IF syntax interpretation.

* Example

IF (a<10) THEN PRINT"A is lower than 10": SETIO"MyTag",1

IF (a<10) THEN

PRINT"A is lower than 10": MyTag@ = 1
ELSE

PRINT"A is bigger than 10": MyTag@ = O
ENDIF

2.1.39. INSTR

* Syntax [Function]
INSTR 11,51,52
* I1isthe indexin the string to search (valid value goes from 1 to LEN S1)
« Slisthe string to be search for S2

+ S2isthe string to search forin S1

* Purpose
The function returns an integer equal to the position of string S2 in string S1.

+ If string S2 is found, the function return a value from 1 to the length of S1 (The returned
index is 1 based).

+ If string S2is not contained in S1, the function returns O.
The 11 parameter should be 1 to search the whole S1 string.

If 11 is >0 then string S1 is searched starting at offset I1. The value returned is sfill referenced to

Page 60/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

the beginning of S1.

* Example

INSTR 1, "AAABBC","BB" =

|
N

INSTR 3, "AAABBC","BB" = 4

- Note -

As internally, the INSTR function uses the character zero (0x00) as delimiter, you cannot search
for character zero with INSTR. B$=CHR$(0) : A% = INSTR 1,A$,B$ will always return 1, whichever a
zero character is present or nof.

2.1.40. INT

* Syntax [function]
INT F1

* Purpose

Extract the integer part of the number. There is no rounding operation.

* Example

A = INT(10.95)
REM A equals 10.00

A% = 10.95
REM A equals 10 --- automatic type conversion

Page 61 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

2.1.41. IOMOD

+ Syntax [function]
IOMOD TagRef

+ TagRefis the Tag reference (TagName, ID or -Index)
See Tag Access on page 21

* Purpose

Returns '1' if the TagRef Tag value has been modified in the eWON since the last call to the
IOMOD command.

The call to this function resets Tag change internal flag to 0. i.e. if the variable doesn't
change anymore, the next call to IOMOD will return 0. You can achieve an equivalent
behavior with the use of ONCHANGE event handler.

* Example

as = IOMOD " MYTAG "
IF a% THEN PRINT " mytag has changed "

+ Seealso
“ONCHANGE" on page 71

2.1.42. IORCV

* Syntax [function]
IORCV SI1[11]
* Slisthe STRING IOServerName parameter

* |1is an optional additional parameter (=0 OR =1 OR =-1)

* Purpose

The IOSEND and IORCYV functions must be used together. They are used to send/receive
custom IOServer requests.

These functions can only be used if IOServer is configured.
Use IORCYV function for reading IO server response to an IOSEND request.

- Note -

Page 62 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

There are three fransmission slofs available, using IORCV allows you to free them before the
three slots are busy. Requests are interlaced with gateway requests sent to the 10 server and
with normal IO server polling operations.

* First Case
a$ = IORCV a%
a$ = IORCV a%,0

Returns the result or the status of the Request.

a% holds the request number and is the result of the IOSEND command.

AP="XXXXXXXXX" where XXXXXXXXX is the result of the request
a$="#FREE" slot a% is free
a$="#RUN" slot a% is in progress
a$="#ERR" slot a% is done with error

Table 15: First case, | = 0 for IORCV command

If the request is done (all cases except “#RUN"), the slot is always freed after the “IORCV a
%" or "IORCV a%,0".

» Second Case
a$ = IORCV a%,-1

Same as for "a$=IORCV a%,0", but the slot is not freed if a request is done.

» Third Case

b% = IORCV a%,1

Returns the status of the IORCV command in INTEGER format. The slot is not freed by this
parameter.

The returned status can contain the following values:

Page 63 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

%= -2 slot a% is free

b% = -1 slot a% is in progress

% =0 slot a% is done with success

% >0 slot a% is done with error

b% < -2 lot a% is done with error - code type: warning. Such

warning codes mean “Read failed” on the serial link.
These warnings are flagged as intfernal and thus are

not added in the event log.

The warning codes can be very long; ie. -536893114

Table 16: Third case, | = 1 for IORCV command
* Example
TestIO:
AS = chrS$(4)+chrs$ (0)+chrS (0) +chr$ (0) +chr$S (1) : rem create modbus command

rem initiate the modbus request on slave 21
a% = IOSEND "MODBUS","21",AS

Wait IO End:
b% = IORCV a%,1 : rem read the status
IF b%=-1 THEN
GOTO Wait IO End : rem if idle then loop
ENDIF

BS = IORCV a% : rem read the result and free the slot

PRINT LEN (BS)
PRINT BS$ END

+ See also
“IOSEND” on page 64

2.1.43. IOSEND

* Syntax [function]
IOSEND S1, §2, S3

* Purpose
Sends a request by using the 10 server's protocol.

See “IORCV" on page 62 for an example of how this function must be used.

Page 64 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

Parameters are:
» STRING IOServerName: IO Server name as it appears in the Tag configuration page

» STRING Address: Slave address as described in the eWON User manual for each O
server section

« STRING loCommand: Array of bytes with a protocol command, the content depends
on the 10 server.

Returns a request number (slot) that must be used in IORCV for reading the response to the
request.

- Note -

The request result is read by using the IORCV function and uses a polling mechanism. That
means that you need fo use IORCV in order to check with the request received with IOSEND
that the slot is free.

There are three fransmission slofs available, using IORCV allows you to free them before the
three slots are busy. Requests are interlaced with gateway requests sent to the IO server and
with normal IO server polling operations.

* Example

a% = IOSEND IOServerName,Address, IoCommand

* Seedlso
“IORCV” on page 62

2.1.44. LEN

» Syntax [function]
LEN ST

* Purpose
The function returns the number of characters in a string.

* Example

a$: "Hop "
A% = LEN AS

Page 65/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

REM a% equal 3

2.1.45. LOGEVENT

* Syntax [command]
LOGEVENT S1 [,S2]
» Slisthe phrase to log

+ S2is the type of logging. This parameter is optional and can take the following ranges

of values:
0...99 Error
-99 ...-1 Warning
100 ... 199 Trace

Table 17: LOGEVENT — Range of values
If the logging level is not specified, it is considered to be an error.

* Purpose

Appends an event to the log file. The current time is automatically used for event logging.

* Example

logevent "Save this in log", 120
REM Would append 978353046;"01/01/2001 12:44:06";"Save this in log" to the
log file.

2.1.46. LOGIO

+ Syntax [command]
LOGIO TagRef

TagRef is the Tag reference (TagName, ID or -Index) See Tag Access on page 10

* Purpose
Force historical logging of TagRef Tag.

The Tag must have historical logging enabled (not available on all eWON's versions).

Page 66 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2

List of Keywords

The point is logged at the time the LOGIO command is issued with its current value.

- Note -

If the Tag is configured for historical logging with logging dead band equal fo -1 and time
interval equal to 0, no point will be logged automatically and it is possible to program a purely
scripted logging.

* Example

LOGIO "mytag"

2.1.47. LTRIM

* Syntax[Command]
LTRIM S1

« Slisastring.

* Purpose

LTRIM returns a copy of a string with the leftmost spaces removed.

* Example

b$ = LTRIM a$

» See also
“RTRIM" on page 94

2.1.48. MEMORY

* Syntax
MEMORY S1
+ S1 can be one of the 3 next values:
* "PROG" returns the free memory of the program zone
* “VAR" returns the free memory of the variable zone
* “TOT" returns “PROG"” + “VAR"

Page 67 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

2.1.49. MOD

» Syntax [Operator]
E1 MOD E2

* Purpose
Compute the remainder of the division of E1 by E2

* Example

1 MOD 2
REM returns 1
2 MOD 2
REM returns O

« See also

“Operators priority” on page 17

2.1.50. MONTH

» Syntax [Function]
MONTH ET
« Elis adateininteger format (number of seconds since 1/1/1970)
« Slis adatein String format ("18/09/2003 15:45:30")

* Purpose

This function returns an integer corresponding to the value of the month (1--12) that
matches a defined time variable.

- Important -

Do not call the function with a float variable of value (or this would result to error "invalid
parameter").

* Example

= TIMES
a% = MONTH a$

o)
oy
|

Page 68 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

o
o\
Il

getsys prg, "TIMESEC"
= MONTH Db%

Q
o
|

+ See also
“DAY" on page 30 “DOW" on page 31, “DOY" on page 32, “WOY" on page 109

2.1.51. NOT

* Syntax [function]
NOTEI

* Purpose

The function returns '1'if E1 is equal to '0' otherwise the function returns O.

* Example

IF NOT a% THEN PRINT " A% is worth 0 "

» See also

“Operators priority” on page 17

2.1.52. NTPSync

» Syntax [function]

NtpSync

* Purpose

Posts a request for clock resynchronization (even if this feature is disabled in the
configuration).

2.1.53. ONXxXxXXXX

There are some ONxxxxxx commands listed below.

These commands are used to register a BASIC action to perform in case of special
conditions. For every ONxxxxxx command, the action to execute is a string that is used as a
BASIC command line.

When the condition occurs, the command is queued in an execution queue and is

Page 69 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

executed when its turn comes.

These functions are:

ONTIMER Executed when one of the timers
expires
ONCHANCE Executed when a Tag changes (value
or configuration)
ONALARM Executed when a Tag alarm state
changes
ONERROR Executed when an error occurs during
BASIC execution
ONSTATUS Executed when a scheduled action is
finished (success or failure)
ONSMS Executed when a SMS is received (only
for eWON with GSM/GPRS Modem)
ONPPP Executed when the PPP connection
goes online or offline
ONVPN Executed when the VPN goes
connected or disconnected
ONWAN Executed when the WAN goes

connected or disconnected
Table 18: The various “ONXXXX" functions
When the command line programmed is executed, a special parameter is set in SETSYS

PRG,"EVTINFO". The value of the parameter depends on the ONxxxxxx function and it can
be checked with the GETSYS command.

- Important -

For all ONxxxx command, if the last parameter is omitted, the action is canceled.

* Example

ONTIMER 1
REM will cancel any action programmed on TIMER 1.

» See also

Page 70/ 130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK
Chapter 2

List of Keywords

“GETSYS, SETSYS” on page 47, ONxxxxx (following chapters)

2.1.53.1. ONALARM

* Syntax [command]
ONALARM TagRef,S2

+ TagRef is the Tag reference (TagName, ID or -Index)
See Tag Access on page 21

+ S2isthe command line to execute in case of alarm state change.

* Purpose
Executes the S2 command line when alarm state on TagRef Tag changes. The EVTINFO

parameter (see GETSYS page 24) is set to the Tag ID when command is called.

- Note -

ONALARM will execute the command when the alarm status gets the value "2" (or above), that
means that ONALARM does not detect the "pre frigger" status (value=1).

* Example

ONALARM "MyTag","goto MyTagAlarm"

» See also

“ALSTAT" on page 25, “GETSYS, SETSYS” on page 47, "ONxxxxxx" on page 69, "ONCHANGE"
on page 71

2.1.53.2. ONCHANGE

+ Syntax [command]
ONCHANGE TagRef,S2

+ TagRef is the Tag reference (TagName, ID or -Index)
See Tag Access on page 10

+ S2isthe command line to execute in case of value change.

* Purpose
Executes S2 command line when the TagRef Tag changes (value or configuration).
The EVTINFO parameter (see “GETSYS, SETSYS” on page 24) is set to the Tag ID when

Page 71 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2
List of Keywords

command is called.

- Note -

The ONCHANGE is friggered when:
the value of the Tag changes
the configuration of the tag is updated.

* Example

ONCHANGE "MyTag", "goto MyTagChange"

+ Seealso
“IOMOD" on page 62, “GETSYS, SETSYS” on page47, “ONxxxxxx" on page 69

2.1.53.3. ONDATE

+ Syntax [command]
ONDATE I1,51,52
* |1 is the planner entry index to set (from 1 to 10).
« Slisthe Timer Interval string.
+ S2is the Basic commandy(s) to execute at the specified interval.
ONDATE I1

* 11isthe planner entry index to delete (from 1 to 10).

* Purpose
The ONDATE function allows you to defined 10 plannified tasks.
Available since Firmware 5.7.

All ONDATE entries are deleted automatically when the program is stopped by the
RUN/STOP link.

2.1.53.3.1. Timer Interval settings
The syntax of the S2 parameter is the following: mm hh dd MMM DDD

mm This is the Minute parameter.
A number between 0 to 59

Page 72 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

Field Settings

hh This is the Hour parameter.
A number between 0 to 23

dd This is the Day parameter.
A number between 1 to 31
MMM This is the Month parameter.

A number between 1 to 12 Or the month name abbreviation in english
(jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec)

DDD This is the Day Of Week parameter.
A number between 1 to 7 with 1=monday, 2=tuesday, ..., 7=sunday Or
the day name abreviation in english (mon, tue, wed, thu, fri, sat, sun)

Table 19: ONDATE - Timer Interval syntax

- Important -

These 5 parameters are all required! When used together, the dd and DDD parameters make
an OR operation (every dd of the month or DDD).

In addition, there are some operators to specify multiple date/time.

* The * (asterisk) operator specifies all possible values for a field from Table
14,
For example, an * in the hh time field would be equivalent to 'every hour'.

The , (comma) operator specifies a list of values.
For example: "1,3,4,7,8" (space inside the list must not be used)

- The - (dash) operator specifies a range of values.
For example: "1-6", which is equivalent to "1,2,3,4,5,6".

/ The / (slash) operator (called "step"), which can be used to skip a given
number of values.
For example, "*/3" in the hour time field is equivalent to
"0,3,6,9,12,15,18,21".

Table 20: ONDATE - Timer Interval Operators

* Example
ONDATE 1,"* * * **'"GOTO MyFunc" will do "GOTO MyFunc" every minutes.

Page 73 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 2
List of Keywords

ONDATE 1,"0 * * * *' "GOTO MyFunc" will do "GOTO MyFunc" every hour.

ONDATE 1,"0 0 * * *',"GOTO MyFunc" will do "GOTO MyFunc" on every day at
midnight (00:00).

ONDATE 1,"*/15 * * * ** *"GOTO MyFunc" will do "GOTO MyFunc" every 15 minutes.

ONDATE 1,157 1 1 *,"GOTO MyFunc" will do "GOTO MyFunc" at 7:15, the first of
january.
Could also be written like '157 1 jan *’
ONDATE 1,158 * * 1""GOTO MyFunc" will do "GOTO MyFunc" at 8:15, each
monday.
Could also be written also like '15 8 * *
mon’

ONDATE 1,"0 8-18 * * 1-5","GOTO MyFunc" will do "GOTO MyFunc" at every hour
between 8:00 and 18:00 on every working
day (monday to friday)

ONDATE 1,"0 6,7,18,19 * * *'"GOTO MyFunc" will do "GOTO MyFunc" at 6, 7, 18 and 19
o'clock on every day.

ONDATE 1,"** 13 * fri","GOTO MyFunc" will do "GOTO MyFunc" at every minutes on
each friday OR the 13th of the month (and
not only on the friday 13th).

ONDATE 1 will delete the plannified entry 1

Table 21: Task Planner — Timer examples

+ See also
“TSET” on page 105, “ONTIMER” on page 77

2.1.53.4. ONERROR

* Syntax [command]
ONERROR S1

+ Slisthe command line to execute when an error occurs during program execution .

* Purpose
The EVTINFO parameter (See GETSYS, SETSYS on page 24) is set to the code of the error.

* Example

Page 74 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2
List of Keywords

ONERROR "goto TrapError"

+ Seealso
“GETSYS, SETSYS” on page 47, “ONxxxxxx" on page 69

2.1.53.5. ONPPP

* Syntax [command]
ONPPP S1
« Slisthe command line to execute when the PPP connection goes online or offline.

* Purpose
The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

1 The PPP connection has gone ONLINE
2 The PPP has gone OFFLINE

Table 22: ONPPP — EVTINFO values

* Example

ONPPP "goto PppAction"
END PppAction:
I%=GETSYS PRG, "EVTINFO"
IF I%=1 THEN
PRINT "Online with address ";GETSYS PRG, "PPPIP"
ELSE
PRINT "PPP Going offline"
ENDIF
END

+ Seealso
"GETSYS, SETSYS” on page 47, “ONxxxxxx" on page 69

2.1.53.6. ONSMS

+ Syntax [command]

Page 75/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

ONSMS S1

* S1isthe command line to execute when eWON receives a SMS.

* Purpose

A typical use of the ONSMS syntax is allowing eWON to send a read SMS receipt to the SMS
sender

You can read the received SMS with GETSYS PRG function with
* smsRead:
* hold 1 if there is a new SMS (reading smsRead load the other parameters)
* hold O if the SMS queue is empty
* smsFrom: String holding the phone number of the sender
+ smsDate: String holding the Date of SMS reception
* smsMsg: String holding the SMS message

* Example

InitSection:
ONSMS "Goto Hsms"
END

Hsms:
a%$ = getsys prg, "SmsRead"
IF (a%<>0) then

s% = s%+t1l

print "SMS Nr: ";s$%

f$ = getsys prg, "smsfrom"
print "From: ";f$

print getsys prg, "smsdate"
a$ = getsys prg, "smsmsg"
print "Message: ";a$
b$ = £$+",gsm,0"
c$ = "Received message: "+a$
sendsms b$,c$
goto HSms

ENDIF

END

Page 76 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2

List of Keywords

2.1.53.7. ONSTATUS

+ Syntax [command]
ONSTATUS S1

« S1isthe command line to execute when a scheduled action is finished.

* Purpose

The EVTINFO parameter (see GETSYS page 24) is set to the ACTIONID of the finished action
when command is called. This function can be used to track success or failure of scheduled
actions.

* Example

ONSTATUS "goto Status"

» See also

“GETSYS, SETSYS” on page 47, "GETSYS, SETSYS” on page 47, "PUTFTP” on page 89,
“SENDMAIL" on page 94, “SENDSMS” on page 95, “SENDTRAP” on page 96

2.1.53.8. ONTIMER

* Syntax [command]
ONTIMER E1,S1
* Elis the timer number (see TSET page 105)

« Slisthe command line fo execute when fimer expires.

* Purpose
Executes S1 command line when E1 expires.

The EVTINFO parameter (see GETSYS, SETSYS page 47) is set to the timer number when
command is called.

* Example

ONTIMER 1,"goto Timerl"
ONTIMER 1, "LOGIO ‘mytag’ "

+ Seealso
“GETSYS, SETSYS” on page47, “ONxxxxxx" on page 69 “TSET" on page 105

Page 77 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2

List of Keywords

2.1.53.9. ONVPN

+ Syntax [command]
ONVPN §S1

+ Slisthe command line to execute when the VPN connection status change (at
connection or at disconnection).

* Purpose
The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

1 The VPN connection has gone ONLINE
2 The VPN has gone OFFLINE

Table 23: ONVPN - EVTINFO values

* Example

ONVPN "goto VPN Action"
END
VPN Action:
I$=GETSYS PRG, "EVTINFO"
IF I%=1 THEN

PRINT "VPN Online"

ELSE
PRINT "VPN Going offline"
ENDIF
END
+ Seealso

“GETSYS, SETSYS” on page 47, “ONxxxxxx" on page 69

2.1.53.10. ONWAN

* Syntax [command]
ONWAN S1

+ Slisthe command line to execute when the WAN connection status change (at
connection or at disconnection).

* Purpose
The EVTINFO parameter (see GETSYS page 24) is set to one of the following values:

Page 78 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 2
List of Keywords

1 The WAN connection has gone ONLINE
2 The WAN has gone OFFLINE

Table 24: ONWAN — EVTINFO values

* Example

ONWAN "goto WAN Action"
END
WAN Action:
I%=GETSYS PRG, "EVTINFO"
IF I%=1 THEN
PRINT "WAN Online with address";GETSYS PRG, "WANIP"

ELSE
PRINT "WAN Going offline"
ENDIF
END
+ See also

“GETSYS, SETSYS” on page47, “ONxxxxxx™ on page 69

2.1.54. OPEN

2.1.54.1. Introduction to file management
Files accessed in BASIC can be of 4 different types:
 Files from the /usr directory
+ Serial communication link
» TCP or UDP socket
» Export Block Descriptor

2.1.54.2. OPEN general syntax

There are two different modes of operation for the file access:

* BINARY mode: file is read by blocks of bytes

Page 79 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* TEXT mode: files are read or written as CSV files

See the “"GET"” on page 41 and "PUT"” on page 87 commands for a detailed difference
between the BINARY and TEXT mode outpufts.

There are 3 operation types:

INPUT The file must exist. It is opened for a read only
operation. The file pointer is set to the beginning of
the file

OUTPUT The Path must exist. If the file exists it is erased first.
The file is opened for write only operation
APPEND The Path must exist. The file doesn't have to exist.

If the file does not exist, it is created (like with
OUTPUT type). If the file exists, it is opened and the
write pointer is located at the end of the file. The
file is opened for write only operation

Table 25: OPEN read & write operations parameters

When binary mode is used, the data written to the file are strings of characters that are
considered as stream of bytes.

The GET command returns the amount of bytes requested. When Text mode is used, the
operation is completely different: the PUT operation is more like a PRINT command directed
to file, the data are formatted as text, and each data is separated by a ‘;’ in the output file
(strings are exported between quotes).

The GET command works like a READ command, the file is read sequentially and each GET
returns one of the ;' separated element, the type of the data returned depends on the
type of data read. In both modes, files are read sequentially until end of file is reached. End
of file can be tested with the EOF function.

The eWON user flash file system allows up to 8 files to be simultaneously opened for read
(even twice the same file), and 1 file opened for write.

If a file is opened for read it cannot be opened for write at the same time (and vice versa).

Running the program will close any previously opened files (not GOTO).
2.1.54.3. Different File/stream types

2.1.54.3.1. FILE open /usr

* Syntax [command]
OPEN ST FOR BINARY | TEXT INPUT | OUTPUT | APPEND AS E1

+ Elis the file number. After the OPEN operation, the file is referenced by its file number

Page 80/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 2
List of Keywords

and not by its file name. There are 8 file numbers available. Once a file number is
assigned to a file, it is allocated to that file, until the CLOSE command is issued.

» S1 describes the access to a file that is located on eWON directories. S1 must respect
the following syntax:

« "file:/directory/filename"
This allows to read or write files in the /usr directories. You will not be able to access
the files in the root (virtual files like config.txt) with this command.

_ eampe | Commen

OPEN "file:/sys/test.dat" FOR BINARY INPUT AS 1 Open:s file 1
A$=GET 1,4 Reads 4 bytes
CLOSE 1

Table 26: OPEN - different file type example 1

 If S1 does not begin by "file:", "tcp”, "com", or "exp", then the file will be considered as
being part of the /usr directory.

The following syntax is the old one (version 3) and is kept for compatibility purpose.

_ eamele | Commen

OPEN "test.dat" FOR BINARY INPUT AS 1 Open the /usr/test.dat file
A$=GET 1,4 Reads 4 bytes
CLOSE 1

Table 27: OPEN - different file type example 2

2.1.54.3.2. TCP or UDP stream open Syntax [command]
OPEN S1 FOR BINARY INPUT | OUTPUT AS E1
« S1 must respect the following syntax:

» ‘“tcp:Address:dest_Port[,TimeOut]”
“udp:Address:dest_Port[:src_Port][,TimeOut]”

* Address can be a dotted IP address like 10.0.0.1 or a valid resolvable internet name
like ftp.ewon.be

» dest_Port must be a valid port number from 1 to 65535.

* src_Port (optional)
If defined, the return port will be forced to the src_Port value (works only with UDP
protocol).

If not defined, the return port is allocated automatically by the eWON TCP/IP
stack.

» TimeOut (optional) is the number of seconds eWON will wait to decide if the OPEN
command failed (default : 75 sec)

Page 81 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* Elis the file number. After the OPEN operation, the file is referenced by its file number
and not by its file name. There are 8 file numbers available. Once a file number is
assigned to afile, it is allocated to that file, until the CLOSE command is issued.

- Note -

This command works only with BINARY

- Important -

For scheduled action: when the OPEN command is used to open a TCP connection, the
command returns before the connection is actually opened. A scheduled action is posted
because opening the socket may require a dial out or take up to more than a minute, and the
BASIC cannot be stopped during that time.

In order to know if the connection is established, the user has 2 options:

* Check the scheduled action status by checking the PRG,ACTIONSTAT (See GETSYS,
SETSYS on page 24).

* Read the file with GET: as long as the file is not actually opened, the function returns
#CLOSED#.
When the function stops sending #CLOSED# the file can be read and written for
socket operations.

* Example

OPEN "tcp:10.0.0.1:25" FOR BINARY OUTPUT AS 1
PUT 1,CHRS (13)+CHRS (10)

AS=GET 1

CLOSE 1

Opens socket to 10.0.0.1 port 25 for read/write access. Write a CRLF then read response.

2.1.54.3.3. COM port open Syntax [command]
OPEN S1 FOR BINARY INPUT | OUTPUT AS E1
« S1 will be as follows: com:n,b,dpsh
* where nis 1 to 4 (the port number, 1 is Front panel serial port, 2 is Modem Port)
* where b is the baud rate

* where d is the number of bits "7" or "8"

Page 82 /130 Programming Reference Guide | RG 006

eWON

MALCHINES CAN TALK

Chapter 2
List of Keywords

» where p is the parity: "e","o0" or "n"
* where s is the number of stop bit "1" or "2"
* where h is the handshaking "h": half duplex, "r': yes Rts/Cts, "n": No
» This command will open the serial port to port 1 to 4 with the given line parameters.

+ Elis the file number. After the OPEN operation, the file is referenced by its file number
and not by its file name. There are 8 file numbers available. Once a file number is
assigned to afile it is allocated to that file until the CLOSE command is issued.

- Note -

This command works only with BINARY. Both INPUT and OUTPUT modes allow to both Read and
Write on the COM port.

Attempting to USE a serial port used by an IO server is not allowed and retfurns an error.

* Example

OPEN "com:1,9600,8nln" FOR BINARY OUTPUT AS 3

Opens the COMI (Serial port 1) with parameters: speed 9600, bit 8, parity none, stop bit 1
and handshaking no.

The file number used is 3. You are in Binary mode and you can read and write.

2.1.54.3.4. EXP export bloc descriptor open Syntax [command]
OPEN S1 FOR TEXT | BINARY INPUT AS E1
« S1 will be as follows: "exp:XXXXX", where XXXXX is an Export Block Descriptor.

* Elisthe file number. After the OPEN operation, the file is referenced by its file number
and not by its file name. There are 8 file numbers available. Once a file number is
assigned to a file it is allocated to that file until the CLOSE command is issued. When
the export block has been read (or not if you close before end) you must call CLOSE
to release memory.

- Important -

You cannot use the PUT command with a EXP: file

Page 83 /130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK Chapter 2
List of Keywords

* Example

OPEN "exp:S$dtAR S$ftT" FOR TEXT INPUT AS 1
Loop:

AS = Get 1

PRINT AS$

IF AS <> "" THEN GOTO Loop

CLOSE 1

In this case the "a$ = get 1" can be called until it returns an empty string to read the content
of the Export Block Descriptor; the data are then read by blocks of maximum 2048 bytes. If
you want to reduce or increase that size, you can call "a$ = get 1,y", where y is the
maximum number of bytes you want the function to return (do not put y=0).

OPEN "exp:S$dtUF S$ftT $fn/myfile.txt" FOR TEXT INPUT AS 1
AS = Get 1

PRINT AS

CLOSE 1

+ Seealso
“CLOSE” on page 29 “"EOF" on page 33, “GET" on page 41, “PUT"” on page 87

2.1.55. OR

+ Syntax [Operator]
ET ORE2

* Purpose
Does a bit-by-bit OR between the 2 integers E1 and E2.
Pay attention that:

* When executed on float elements (float constant or float variable), the OR functions
returns the logical OR operation.

+ When executed on integer elements (integer constant or integer variable - like i%), the
OR function returns the bitwise OR operation

» This is NOT true for AND and XOR

» This is historical and is left for compatibility with existing programs

* Example

Page 84 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

1 OR 2 REM returns 3
2 OR 2 REM returns 2
3 OR 1 REM returns 3

* Logical OR

varl=0.0

var2=0.0

ORResult = varl OR var2
Print ORResult

rem ORResult = 0.0

varl=0.0

var2=12.0

ORResult = varl OR var?2
Print ORResult

rem ORResult = 1.0

» See also

“Operators priority” on page 17, “AND" on page 25, “XOR" on page 110

2.1.56. Pl

+ Syntax [function]
Pl

* Purpose
The function returns 3.14159265

2.1.57. PRINT - AT

* Syntax [Command]
PRINT CA
+ This command displays the text CA followed by a new line.
PRINT CA;

+ This command displays the text CA without a new line.

Page 85/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

PRINT ATEI, E2 CA
* This command displays the text CA at the E1 column and at the E2 line.
PRINT CAI1;CA2[;CA3...]
» Display the CAT1, CA2 text etc. one following the other (don't pass to next line).

* Purpose
The eWON has a virtual "screen” that can be used in order to inspect the content of values
while the program is running, or in order to debug an expression...

* Example

PRINT " HOP1 "; HOP2 "

+ See also
“CLS"” on page 29

2.1.58. PRINT #

* Syntax [Command]
PRINT #x,CA
* With x defined as follows:
* 0 = User's web page
1 = Virtual screen
+ CAls described in the PRINT - AT section.

* Purpose
The PRINT command sends output to the virtual screen.

With the PRINT # command, output can be routed to another destination. When running
ASP code, the print command can be used to build the content of the page sent to the
user.

If you print to Web page, the Print command add a "
" at the end of line to pass to the
next line.

If you don't want to pass to next line, you need to add a ;" (semicolon) at your Print such
as : PRINT A$;

Example

Page 86 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

PRINT #0,AS REM sends AS to the user's web page
PRINT #1,A$ REM works like PRINT AS$ by sending to the virtual screen.

2.1.59. PUT

The put command works completely differently if the file is opened in Binary mode or in Text
mode. The file must be opened for OUTPUT or for APPEND operation (APPEND for /usr files
only).

+ COM, TCP-UDP, /usr

The file syntax has been extended in version 3 of the eWON to allow access to the serial port
and to TCP and UDP socket. The command description describes operation for /usr (Text
and Binary modes), COM (always binary) and TCP-UDP (always binary)

2.1.59.1. File Syntax[Command] - Binary mode
PUTEI, S1[;S2...]
* Elisfile number (1-8)

« Slisthe string of char to append to the file. The number of bytes written depends on
the length of the string.

+ S2...: (optional) additional data to write.
The length of a BASIC line limits the number of item:s.

- Important -

The delimiter between the file number and the firstitemis a ‘,” but the separator between the
first item and the optfional nextitem is a ';’. This is close to the PRINT syntax.

* Example

OPEN "/myfile.bin" FOR BINARY OUTPUT AS 1
PUT 1,"ABCDEF";"GHIJKLMN"

CLOSE 1

REM Now reopens and append

OPEN "/myfile.bin" FOR BINARY APPEND AS 1
PUT 1, "OPQRSTUVWXYZ"

CLOSE 1

Page 87 /130 Programming Reference Guide | RG 006

reWON

MACHINES CAN TALK

Chapter 2
List of Keywords

2.1.59.2. File Syntax[Command] - Text mode
PUTEI, VI[;V2...][]]
* Elisfile number (1-8)
* Vlisan element of type STRING, INTEGER or FLOAT
* V2...(optional): additional data to write (STRING, INTEGER or FLOAT)

The data are converted to text before being written to file. If data is of STRING type it is
written between quotes ("), otherwise not. A ‘;" is inserted between each data written to the
file.

If the PUT command line ends with a ‘;’, the sequence of data can continue on another
BASIC line. If the PUT command line ends without the *;" character, the line is considered as
finished and a CRLF (CHR$(13)+CHR$(10)) is added at the end of the file.

* Example

OPEN "/myfile.txt" FOR TEXT OUTPUT AS 1
PUT 1,123;"ABC";

PUT 1,"DEF"

PUT 1,345.7;"YYY";"ZZZ"

CLOSE 1

The above code produces this file:

123;"ABC"; "DEF"
345.7;"YYY";"Z2ZZ"

There is a CRLF at the end of the last line. By writing PUT 1,345.7;"YYY";"ZZZ"; you would have
avoided that.

2.1.59.3. COM Syntax[Command] - Binary mode
PUT 1, S1

+ S1:string of data to write to serial port

* Purpose
Writes the S1 string to the serial port. The function returns only after all the data have been
actually sent.

- Important -

Page 88 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2

List of Keywords

The string can contain any byte by using the CHR$ function.
Serial port cannot be used by an IO server in the same time, or it would result to a “IO Error”.

2.1.59.4. TCP/UDP Syntax[Command] - Binary mode
PUTETI, S1
* El:is the file number returned by the OPEN function.

» Sl:string of data to write to the socket.

* Purpose
Writes the S1 string to the socket

The function returns only after all the data have been actually transferred to the stack.

- Important -

The socket must be opened. The OPEN command refurns immediately but generates a
scheduled action. The PUT command will generate an IO error until the socket is actually
opened (See OPEN on page 40).

When data are fransferred to the TCP/IP stack, it does not mean that the data have been
received by the socket end point. It may take minutes before the data are considered as
undeliverable and the socket is put in error mode.

The string can contain any byte by using the CHR$ function.

+ Seealso
“CLOSE" on page 29, YEOF"” on page 33, "GET"” on page 41, "OPEN" on page 79.

2.1.60. PUTFTP

* Syntax[command]
PUTFTP S1,582 [,S3]
+ Slis the destination file name (to write on the FTPServer)

« S2is the file content (String)
This content may be an EXPORT_BLOCK_DESCRIPTOR content.
See also chapter “Export block descriptor” in the General User Guide.

Page 89 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

» S3 (optional) is the FTP server connection parameters.
If S3is unused, the FTPServer parameters from the General config page will be used.

* Purpose
Put a file on a FTP server, content of the file is either a string or an Export_Bloc_Descriptor.
The S3 parameters is as follow: [user:password@]servername[:port][,optionT]

+ The optionl parameters is to force PassiveMode, put a value 1 as optionl
parameter.
If omitted, option1=0, then eWON will connect in ActiveMode.
This command posts a scheduled action request for a PUTFTP generation.

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled
action and allows tracking this action. It is also possible to program an ONSTATUS action that
will be called when the action is finished (with or without success).

* Example

REM Post a file containing a custom text
PUTFTP "/ewonl/MyFile.txt","this is the text of the file"

REM Post a file containing the event log
PUTFTP "/ewonl/events.txt"," [SAtEV]"

REM Post on a defined FTP server, a file with the Histo logging of
Temperature tag

PUTFTP
"/ewonl/Temperature.txt"," [dtHLSftTStnTemperature] ", "user:pwd@FTPserver.com"

+ See also
“GETSYS, SETSYS” on page 47, “ONxxxxxx™ on page 69, “ONSTATUS” on page 77.

2.1.61. PUTHTTP

* Syntax [Command]
PUTHTTP §1,52,583,54,585 [,S6]

» S1: Connexion Parameter
with the format [User:Password@]ServerName|:Port]

* S2: URI of the action (absolute path of the request URI)

« S3: Text fields
with the format [FieldName1=ValueName1][&FieldNameX=ValueNameX]*

* S4: File fields
with the format [FieldName1=ExportBlockDescriptor1]

Page 90/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

[&FieldNameX=ExportBlockDescriptorX]*
» S5: Error String
+ S6 (Opftional): "PROXY"
What you should take note of:

* Inthe preceding syntax description the square brackets are used to define an
optional section for a given parameter. The * is used to indicate that the preceding
opfional section may be repeated 0 to n times.

* All the parameters are mandatory. If you don't need to post Text fields, just write an
empty string for the S3 parameter

+ The HTTP Server response sent back will be checked against the Error String. If the
Response contains the Error String the command will finish without success.

+ Spaces in Text fields and File fields strings are not allowed except inside export block
descriptors (inside the EBD brackets).

* One fieldname=valuename section in the text field parameter may not exceed 7500
bytes (Otherwise action will finish without success). This limitation does not apply for
the file fields.

* Purpose

The PUTHTTP command submit an HTTP form to a Web server (like you do when you answer a
Web form).

The submitted forms may contain text fields and file fields.

The HTTP method used is the POST method (multipart/form-data). Content Type of the file
fields is always application/octet-stream. Files to upload are defined using the Export Block
descriptor syntax (See also Export Block descriptor section in the eWON reference guide).

When the function returns, the GETSYS PRG, returns the ID of the scheduled action and
allows tracking of this action. It is also possible to program an ONSTATUS action that will be
called when the action is finished (with or without success).

When "PROXY" is added at the end of the command, the eWON will perform the PUTHTTP
through a Proxy server. The eWON will use the Proxy server parameters configured in System
Setup / Communication / VPN Global.

- Important -

The posting method used (chunked packets) is only correctly handled on IS 6.0 and Apache
Webservers. Posting on IIS 5 doesn’t work (Windows XP). Chuncked packets are not applied
when the "PROXY" parameter is used because most Proxy servers do not accept them.

If PUTHTTP is used with the "PROXY" parameter, then eWON creates a temporary file named
"outhttp.proxy"in the /usr directory to store the data locally before sending it towards the
server via the Proxy.

Page 921 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

* Example

Textfields form without HTTP basic authentfication:

PUTHTTP
"10.0.5.33","/textfields.php","firstname=jack&lastname=nicholson","","failed"

When file fields are not needed an empty string is used for parameter S4. When no port is
specified HTPP port 80 is used.

Text fields with basic authentfification and configured HTTP port:

PUTHTTP

"adml :adm2@www.ewon.biz:89", " /textfields.php", "fname=jack&lname=nicholson",""
"failed"

14

HTTP server is supposed to listen on port 89 at address www.ewon.biz adm1 is used as login
and adm?2 is used as password.

Text fields + file fields:

PUTHTTP "10.0.5.33", "/upload.php","firstname=bob&lastname=nicholson",
"pictures[]=[$dtEV S$fnevents.txt]&pictures[]=[S$dt CF$fnconfig.txt]","failed"

$fn (file name) directive is opfional but when not used $dtCF will be used as destination file
name

Textfields form without HTTP basic authentfication through a Proxy server:

PUTHTTP "10.0.5.33","/
textfields.php","firstname=jack&lastname=nicholson","","failed", "PROXY"

« See also

“ONSTATUS” on page 77, "GETSYS, SETSYS” on page 47, “GETHTTP” on page 45, see Export
Block Descriptor on General Reference Manual

2.1.62. REBOOT

* Syntax [Command]

Page 92 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

REBOOT

* Purpose
This Basic keyword provides a very easy way to reboot eWON.

A typical use of this command is by simply entering it intfo a file you name "remote.bas" then
saving locally and uploading this file on the eWON FTP site to replace the existing
remote.bas file. eWON then directly reboots.

2.1.63. REM

+ Syntax [command]
REM free text

* Purpose

This command enables the insertion of a line of comment in the program. The interpreter
does not consider the line.

* Example

PRINT a%
REM we can put whatever comment we want here
a%=2: REM Set a% to 2

« See also

“// (comment)” on page 24

2.1.64. RENAME

* Syntax [Command]
RENAME S§1,52
« S1,S2 are string

* Purpose

Change the name of file ST to S2. The command only works in the */usr” directory. Omitting
"Jusr/" before the filename will result to a I/O error.

The file and directory names are case sensitive. The directory must exist before the call of
the function. There is no automatic directory creation.

Page 93 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

* Example

RENAME "/usr/OldName.txt","/usr/NewName.txt"

» See also
“ERASE"” on page 34

2.1.65. RTRIM

* Syntax[Command]
RTRIM S1

* Slisastring

* Purpose
RTRIM returns a copy of a string with the rightmost spaces removed.

* Example

b$ = RTRIM a$

» Seeadlso
“LTRIM" on page 67

2.1.66. SENDMAIL

* Syntax[command]
SENDMAIL S1,52,83,54

+ S1is the E-mail address of the recipients (TO). Multiple recipients can be entered
separated by ‘;'.

» S2is the E-mail address of the recipient Carbon Copies (CC). Multiple recipients can
be entered separated by *;'.

+ S3is the subject of the message.

+ S4isthe content of the message.

* Purpose

This command posts a scheduled action request for an Email generation. When the function
returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled action and allows
tracking this action.

Page 94 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

It is also possible to program an ONSTATUS action that will be called when the action is
finished (with or without success).

The S4 message content follows a special syntax that allows sending attachments and
inserting Export data inside the content itself (See also chapter “Export block descriptor” in
the General User Guide).

The content field (S4) syntax can content any number of [EXPORT_BLOCK_DESCRIPTOR],
these blocks will be replaced by their actual content.

* Example
S4 = "Event Log data [$dtEV] And a real time table: [$dtRL $ftT $tnMyTag]l"
Rem will generate an Email with [$dtEV] and [$dtRL..] replaced by the actual
data.

If instead of putting [EXPORT_BLOCK_DESCRIPTOR] you put &[EXPORT_BLOCK_DESCRIPTOR],
then the same data is attached to the Email.

The position in the S4 field where the &[..] is placed does not matter, the attachment &[...]
descriptor will NOT appear in the content itself, but will produce the given attachment.

* Example

M$ = "Event Log data are attached to this mail &[SAtEV]"
Rem will generate an Email with "Event Log data are attached to this mail "
as content and an attachment with the events log.

SENDMAIL "ewon@actl.be", "", "Subject", "Message"
SENDMAIL "ewon@actl.be", "", "Subject", MS
» Seedlso

“GETSYS, SETSYS” on page 47, “ONxxxxxx" on page 69, “ONSTATUS” on page 77.

2.1.67. SENDSMS

* Syntax[command]
SENDSMS S1,52

* S1isthe SMS recipients list.
Please refer to chapter “SMS on alarm configuration” in the General User Guide, for
syntax of this field.

+ S2is the content of the message (maximum 140 characters).

Page 95/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* Purpose
This command posts a scheduled action request for an SMS generation.

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled
action and allows tracking this action. It is also possible to program an ONSTATUS action that
will be called when the action is finished (with or without success).

* Example

REM send an SMS to 2 recipients.

DS = "0407886633,ucp,0475161622, proximus"

DS = DS + ";" + "0407886634,ucp,0475161622,proximus"
SENDSMS D$, "Message from eWON"

+ See also
“GETSYS, SETSYS” on page 47, “"ONxxxxxx" on page 69, “ONSTATUS” on page 77.

2.1.68. SENDTRAP

* Syntax[command]
SENDTRAP 11,51
* |1 is the first trap parameter (INTEGER)
+ Slisthe second trap parameter (STRING)

* Purpose
This command posts a scheduled action request for an SNMP TRAP generation.
The first parameter is sent on OID .1.3.6.1.4.1.8284.2.1.4.2
The second parameter is sentin OID .1.3.6.1.4.1.8284.2.1.4.1

-- Script information
-- ewonScript OBJECT IDENTIFIER ::= { prodEwon 4 }

scpUserNotif OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS read-only

STATUS current

DESCRIPTION

Page 96 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

"This is the text of the last trap sent by the Script"
::= { ewonScript 1 }

scpUserNotifI

OBJECT-TYPE SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This is a free parameters for script generated traps"
::= { ewonScript 2 }

When the function returns, the GETSYS PRG,"ACTIONID" returns the ID of the scheduled
action and allows tracking this action. It is also possible to program an ONSTATUS action that
will be called when the action is finished (with or without success).

* Example

REM send a trap with NotifI = 10 and Notif = Trap message
SENDTRAP 10, "Trap message"

+ Seealso
“GETSYS, SETSYS” on page 47, “"ONxxxxxx" on page 69, “ONSTATUS” on page 77.

2.1.69. SETIO

+ Syntax [command]
SETIO TagRef, F1
+ TagRefis the Tag reference (TagName, ID or -Index) See Tag Access on page 10

* Flisthe value to give to the Tag.

* Purpose

Modifies the value of a Tag. The Tag must be writable (not for the read-only Tags).

- Note -

In many cases this function is efficiently replaced by the TagName@ syntax. For example SETIO
"MyTag", 10.2 is equivalent to MyTag@=10.2

Page 97 /130 Programming Reference Guide | RG 006

e WON

MACHINES CAN TALK

Chapter 2
List of Keywords

* Example

SETIO "MYTAG", 10.123

2.1.70. SETTIME

* Syntax [Command]
SETTIME ST
« Slisthe new date / time fo set.
+ S1 can contain only the time. In that case the date is not modified.

+ S1 can contain only a date. In that case the time is set to 00:00:00

* Purpose

Updates the eWON's real time clock.

- Note -

An event is generated in the events log.

* Example

REM The following are valid time updates

SETTIME "1/1/2000": REM Time is set to 01/01/2000 00:00:00

SETTIME "01/12/2000 12:00": REM Time is set to 01/12/2000 12:00:00
PRINT TIMES: REM suppose it returns "15/01/2000 07:38:04"

SETTIME "12:00": REM Time is set to 15/01/2000 12:00:00

+ See also
“TIME$"” on page 104

2.1.71. SFMT

* Syntax [Command]
SFMT Item, EType[,ESize, SFormat]
* ltemis the number (Integer or Float) to format into string.

* EType is the parameter determining the type of conversion.

Page 98 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* ESize is the size of the output string as formated.

» SFormat is the format specifier for the conversion.

* Purpose

Converts a number (float or integer) to a formated string. The type of conversion is
determined by the EType parameter.

Etype value Conversion Type

1 Convert float number to string (MSB first)

2 Convert float number to string (LSB first)

10 Convert integer to string (MSB first)

11 Convert integer to string (LSB first)

20 Format float number using a SFormat specifier
30 Format integer number using a SFormat specifier
40 Format time as Integer into time as String

Table 28: SFMT function -Etype value and conversion

If ESize is equal to O (or negative) with a SFormat present, then ESize is the size of the output
string as formated.

If ESize is positive, SFMT will produce a string of ESize bytes.

+ See also
“FCNV"” on page 35

2.1.71.1. Convert float to IEEE float representation

The IEEE float representation use four bytes (32 bits).

sign bit B bits) (23 bits)
\]/| exponent ” mantissa |
Ojoj1jt1j1j1j1j0j0j0j1104040J0J0J0JOJOJOJOJOJOJOJOJOJOJOJOJOJOJO| =0.15625

—_e

31 30 23 22 (bit index)

llustration 3: Conversion to an IEEE float
EType=1o0r2
The string could be LSB first:

Page 99 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

AS$ = SFMT FloatNum, 1

This will convert FloatNum to a string holding the IEEE representation with MSB first

AS (1) = MSB (Exponent+ Sign)
AS(4) = LSB (Mantissa LSB)
or MSB first:

A$ = SFMT FloatNum, 2

This will convert FloatNum to a string holding the IEEE representation with LSB first

AS (1) = LSB (Mantissa LSB)

AS (4) = MSB (Exponent+ Sign)
* Example

ieee = -63.456

AS$S = SFMT ieee, 1
rem a$(1)=194 a$(2)=125 a$(3)=210 as(4)=242

AS = SFMT ieee,?2
rem a$ (1)=242 a$(2)=210 as$(3)=125 as(4)=194

2.1.71.2. Convert integer to string

Convert an integer value to a string holding the bytes array representation of this integer.
This representation can be MSB (Most Significant Byte) first or LSB (Least Significant Byte) first.
EType=10o0r 11

The ESize parameter is required. It is the size of the returned string (it can be 1, 2, 3 or 4)

* Example

Page 100/ 130 Programming Reference Guide | RG 006

T eWON

MACHINES CAN TALK Chapter 2

List of Keywords

a% = 1534
AS$ = SFMT a%,10,4
rem a$(1)=0 a$(2)=0 a$(3)=5 as(4)=254

AS = SEMT a%,11,4
rem as$(l)=254 a$(2)=5 as$(3)=0 as(4)=0

2.1.71.3. Convert a float to a string using a SFormat specifier
Convert a float number (MyVal=164.25) to a String using a Format specifier.
EType =20

The ESize parameter is required. It is the size of the returned string (use 0 to let eWON set the
length).

The SFormat parameter is required. It is the format specifier string and is like "%f" or "%.5g".

The syntax for the float format specifier is "%[flags][width][.precision]type":

Type 'f', 'F' : Print a float in normal (fixed-point) notation.

(required) 'e', 'E' : Print a float in standard form ([-]d.ddd e[+/-]ddd).
'g’, 'G': Print a float in either normal or exponential notation,
whichever is more appropriate for its magnitude.
'g' uses lower-case letters.
'G' uses upper-case letters.
This type differs slightly from fixed-point notation in that insignificant
zeroes to the right of the decimal point are not included. Also, the
decimal point is not included on whole numbers.

Flags '+' : always denote the sign '+' or -' of a number (the default is fo omit
(optional) the sign for positive numbers).
'0" : use 0 to left pad the number.
width number : set the length of the whole string for padding. Only needed
(optional) when flag 0 is used.
.precision number : the decimal portion of the output will be expressed in at
(optional) least number digits.

Table 29: SFMT — Conversion from float to string using Sformat - 1

* Example

Myval = 164.25
A$ = SFMT MyVal,20,0,"S$£"

rem a$="164.250000"

A$ = SFMT MyVal,20,0,"$012.3f"

Page 101 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

rem a$="00000164.250"
AS$ = SEMT MyVal,20,0,"%e"
rem a$ = "1.642500e+02"

2.1.71.4. Convert an integer to a string using a SFormat specifier

Convert an infeger number (0% = 1935) to a String using a Format specifier.

EType = 30

The ESize parameter is required. It is the size of the returned string (use 0 to let eWON set the
length).

The SFormat parameter is required. It is the format specifier string and is like "%d" or "%0".

The syntax for the float format specifier is "%l[flags][width]type".

Type 'd' : convert into integer notation.
(required) '0' : convert into Octal notation.
'x' or 'X' : convert into Hexadecimal notation (lowercase or
uppercase)
Flags '+' : always denote the sign '+' or -' of a number (the default is to omit
(optional) the sign for positive numbers).
'0' : use 0 to left pad the number.
Width number : setf the length of the whole string for padding. Only needed
(optional) when flag 0 is used.

Table 30: SFMT — Conversion from float to string using Sformat - 2

* Example

a% = 2568

AS$ = SFMT a%,30,0,"%010d"

rem a$="0000002568"

AS$S = SFMT a%,30,0,"%o"

rem a$="5010" OCTAL notation

AS = SFMT a%,30,0,"%$X" rem a$ = "AQ08"

2.1.71.5. Convert time as Integer into time as String

Convert an Integer holding the number of seconds since 01/01/1970 00:00:00 into a String
holding a time in the format “dd/mm/yyyy hh:mm:ss” (ex: “28/02/2007 16:48:22").

EType =40

Page 102/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2

List of Keywords

SFMT TimeAsint, 40
The TimeAsInt must be an Integer. If not, the function will return a syntax error.

If a float parameter is passed, it must be converted to an integer value first (See INT on
page 61)

- Important -

Float value have not enough precision to hold the big numbers used to represent seconds
since 1/1/1970, this leads to lost of precision during time conversion.

* Example

AS = SFMT 0,40
rem a$="01/01/1970 00:00:00"
a% = 1000000000
AS = SEMT a%, 40
rem a$="09/09/2001 01:46:40"

2.1.72. SGN

* Syntax [function]
SGNFI

* Purpose
Returns the sign of F1:
« IfF1is>0, the function returns 1.
« If F1 =0, the function returns 0.

 [fF1is<0, the function returns -1.

* Example

SGN (-10)

REM returns -1
SGN (-10.6)
REM returns -1
SGN 10

REM returns 1

Page 103 /130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

2.1.73. SQRT

+ Syntax [function]
SQRT F1

* Purpose

Returns the square root of F1.

* Example

SORT 16 :REM returns 4

2.1.74. STRS

* Syntax [function]
STR$ F1/E1

* Purpose
The function returns the character string related to an E1 or F1 number.

* Example

a%=48
a$= STRS a%
REM AS is worth " 48 " after this affectation

» See also
“VAL" on page 106

2.1.75. TIMES

+ Syntax[function]
TIME$

* Purpose

Returns the string with the current date and time. The output format is “dd/mm/yyyy
hh:mm:ss” (ex: “25/10/2004 15:45:55")

The number of characters in the returned string is constant.

Page 104 / 130 Programming Reference Guide | RG 006

e WON

MACHINES CAN TALK

Chapter 2
List of Keywords

- Note -

The GETSYS command provides a mean to return the current time as a number of seconds
since 1/1/1970.
The SFMT and FCNV functions allow you to convert between TimeString and Timelnteger.

* Example

PRINT TIMES

* Seedlso
“SETTIME"” on page 98, See “FCNV" on page 35, See “SFMT” on page 98

2.1.76. TGET

+ Syntax[function]
TGETEI

* Elisthe number of the timer (1 to 4).

* Purpose

Returns N (>0) if the fimer expires and then resets the value (N is the number of fimes the
timer has expired). Returns '0' if the timer did not expired since the last call fo TGET.

* Example

REM timer 1 minute

TSET 1,60

Labell:

IF NOT TGET 1 THEN GOTO LABELL

+ See also
“ONTIMER"” on page 77, “TSET" on page 105.

2.1.77. TSET

* Syntax[Command]
TSETEI, E2

Page 105/ 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords

* Elisthe number of the timer (1 to 4).

« E2isthe value in seconds of the timer.

* Purpose

Initializes the timer E1 at an E2 time base (in second). The timer is read by TGET.

* Example

REM timer 1 minute

TSET 1,60

Labell:

IF NOT TGET 1 THEN GOTO LABEL1

To stop a timer, you must put the value 0:

TSET 1,0

+ Seealso
“ONTIMER"” on page 77, “TGET" on page 105.

2.1.78. TYPES

* Syntax
TYPE$(ST)

+ Slisthe name of the variable. The returned value will be “String”, “Float” or “Integer”

2.1.79. VAL

» Syntax [function]
VAL S1

* Purpose

The function evaluates the character string and returns the corresponding expression.
- Note -

VAL is a function that usually takes an expression and returns a Real after expression

Page 106 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Chapter 2
List of Keywords

evaluation. This VAL function can also evaluate an expression that returns a string.

* Example
as= "12"
a% = VAL (" 10"+ a$)
REM a$% equal 1012
as="abc"
bs="efg"

c$=val ("aS+bs")
REM c$ equal "abcefg"

+ See also
“STR$” on page104.

2.1.80. WAIT

+ Syntax [function]
WAIT N1,S[,N2]
* NI is the File number to wait on.
+ Sisthe operation to execute (max 255 char)

* N2is the fimeout in sec (if omitted, the default is 60 sec)

* Purpose
The WAIT command is used to monitor events on files.

Currently the events monitored are:

« Datareceived on TCP and UDP socket
Wait for data available on N1 (or TimeOut) and then execute the S operation (ex: "goto
DataReceived").

The WAIT function will register a request to wait for the event, it will not block until the event
occurs.

When the WAIT function calls the operation, it will preset the EVTINFO (see Getsys
PRG,"Eviinfo”), with the result of the operation:

Page 107 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 2

List of Keywords

EVTINFO Signification

>0 The event occurred and read can follow:
+ =1l:Readis pending
+ =2:Ready for Write
« =3:Ready for Write and Read is pending

Important : If Read is pending, then the A$=Get N1 function will be
used, in case the Get function returns an empty string, it means that
there is an error on the socket (either the socket was closed by the
other party or the socket is not writable), in that case, the file should be
closed because it is not more valid.

-1 The wait operation was aborted because of an error on the file
monitored (for example the file was closed).

-2 The condition was not met during the wait operation (TimeOut).

Table 31: VAL — EVTINFO values

You can have a maximum of 4 WAIT command pending at the same fime.

If a WAIT command is pending on a file and another WAIT command is issued on the same
file, an “1O Error” error will occur.

* Example

The following example concerns TCP socket. It connects to a server running the ECHO
protocol.

Tw:

Cls

Close 1

OPEN "tcp:10.0.100.1:7" FOR BINARY OUTPUT AS 1
0%=0

WO :

a%$ = Getsys Prg,"actionstat"
IF a%=-1 Then Goto wo

Put 1, "msg start"

Wait 1,"goto rx data"

End

rx data:
a%$=Getsys Prg,"evtinfo"
IF (a%>0) Then

Print "info:";a%
as=Get 1
Print a$

Page 108 / 130 Programming Reference Guide | RG 006

http://en.wikipedia.org/wiki/ECHO_protocol
http://en.wikipedia.org/wiki/ECHO_protocol

TeWON

MACHINES CAN TALK Chapter 2
List of Keywords

Put 1, "abc"+Str$ (o%)

0%=0%+1

Wait 1,"goto rx data"
ELSE
Print "error:";a%
ENDIF

2.1.81. WOY

» Syntax [Function]
WOY ET / S1
« Elis adateininteger format (hnumber of seconds since 1/1/1970)
« Slis adatein String format ("18/09/2003 15:45:30")

* Purpose

This function returns an integer corresponding to the ISO8601 Week-Of-Year number that
matches a specified time variable.

- Note -

Do not call the function with a float variable of value (or this would result to error "invalid
parameter").

* Example

a$ = TIMES
a% = WOY a$

o
oe

= getsys prg, "TIMESEC"
= WOY Db%

[0])
o\

+ Seealso
“DAY" on page 30 “DOW" on page 31, “DOY" on page 32, “MONTH" on page 68

Page 109 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK
Chapter 2

List of Keywords
2.1.82. WriteEBD
This command is available starting firmware v12.

» Syntax [Function]
WriteEBD S1, §2
« Slis an Export Block Descriptor (EBD) in a String format
* S2is the file path the EBD content will be streamed in

This command return an action ID.

* Purpose

This command streams an Export Block Descriptor (EBD) to the filesystem using a scheduled
action.

* Example

WriteEBD “S$dtEV”, “/usr/myEvent.txt”

2.1.83. XOR

» Syntax [Operator]
ET XOR E2

* Purpose
This command returns the bitwise XOR comparison of E1 and E2.
a XOR breturns 1 if aif true orif b is frue, but NOT IF both of them are tfrue.

* Example

1 XOR 2 returns 3
2 XOR 2 returns 0

» See also

“Operators priority” on page 68, “AND"” on page 25, “OR" on page 84.

Page 110/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 3

Debug a BASIC program

3. Debug a BASIC program

With the BASIC IDE comes an integrated console.

This means that you can perform the debugging directly within your code.

¢ GWOH Tag Setup Systemn Setup 10 Server Config Main Menu @
com—r— T sers et pages Lt e Sl
File Edit Window Search Run Debug
$t g «~ Q >_® Scheduler Execution Mode |:| STOP @ D Dy [
- @
§ D @ + | 2
§ Cyclic Section | vt section
§ Init Section 11+ ONTIMER 1, "Goto changeTag"
— 8§ Change Tag ®TSET 1.2

changeTag:
19# thisMyTage = 2
Print thisMyTag@

l:onsolee U<

% Q All Errors Commands Print

>

llustration 4: BASIC IDE window

In the above picture, you'll find :
Number 1
This is the general menu for the debugging. You'll be able to

* Pause, Continue and Abort

* Perform step by step action

* Remove all breakpoints
Number 2
This icon shows / hides the console frame (Number 5)
Number 3
Manually point out the line you want the debugger to stop on.
Number 4

Control the flow of the BASIC script. Thanks to this flow menu, you will be able to
Play/Resume, Pause, Perform step by step action.

Page 111 /130 Programming Reference Guide | RG 006

e WON

MACHINES CAN TALK
Chapter 3

Debug a BASIC program

Number 5

The console frame allows you to perform more advanced actions such as:
+ sort the different types of log (error, command or print)
+ see the result of functions, commands, ...

* manually trigger actions such as functions, label, ...

Page 112/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 4
BASIC Error Codes

4. BASIC Error Codes

These codes are returned in ONERROR:

0 syntax error

—_

'(or)' expected

2 Nno expression present

3 '=' expected

4 not a variable

5 invalid parameter

6 duplicate label

7 undefined label

8 THEN expected

9 TO expected

10 too many nested FOR loops
11 NEXT without FOR

12 too many nested GOSUBs
13 RETURN without GOSUB
14 Out of memory

15 invalid var name

16 variable not found

17 unknown operator

18 mixed string&num operation
19 Dim index error

20 ' expected

21 Number expected

22 Invalid assignment

23 Quote too long

24 Var or keyword too long
25 No more data

26 reenter timer

27 label not found

Page 113/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 4
BASIC Error Codes

28 Operation failed
29 ENDIF expected
30 ENDIF without IF
31 ELSE without IF
32 Math error

33 |O Error

34 End of file

35 valin val

Table 32: Basic Error Codes

Page 114 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 5

Configuration fields

5. Configuration fields

This section describes the fields found in the config.ixt file.

All the fields are readable and writable using GETSYS and SETSYS(unless otherwise specified).
The file is separated in the several sections (System, UserList and TaglList).

One of the three sections must first be loaded with the "SETSYS SYS, xxx" command, where
xxx is one of SYS, USER or TAG.

* Example

Setting the eWON Identification parameter and printing the Information

(parameter = Identification, Information)
SETSYS SYS, "LOAD"
SETSYS SYS, "Identification", "10.0.0.53"

PRINT GETSYS SYS, "Information"
SETSYS SYS, "SAVE"

5.1. SYS Config

The following table describes the fields accessible from the system configuration.

The last column gives the ewon configuration web page where the parameter appears. The
web pages are found under Configuration.

ldentification Identification of the eWON (appears on System

the logon web page logon below the Setup/General/General/lden
logo) tification
Information Complementary information about the System
eWON Setup/General/General/lden
tification
SmtpServerPort SMTP server port System

Setup/General/General/

SmtpServerAddr SMPT server address System
Setup/General/General/

SmipUserName SMTP user name System
Setup/General/General/

AlRetrigint Interval after which an alarm will be re System
triggered if the condition is still frue (only for Setup/General/General/
alarms that have not been

NtpEnable 1 if NTP service is enabled, 0 otherwise System

Page 115/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

NtpServerAddr NTP Server address as a chain of char

NfpServerPort NTP server port

Ntplnterval Interval between NTP connections

PrgAutorun 1 if script starts at eWON boot time. See
script control page

FormatRequest 1 if a format has been requested, 0
otherwise

MbsBaudRate Modbus baud rate. 0 if disabled, positive
value otherwise

Mbs2StopBit 1 if Modbus IO server uses two stop bits, O if
it uses 1 stop bit

MbsParity 0 for none, 1 for even, 2 for odd
MbsReplyTO Modbus reply time out

MbsPR (x) X ==1.3, Modbus topic 1..3 polling rate
(expressed in Msec)

TimeZoneOffset Time zone (expressed in seconds)

MbsAddress Modbus address

MbsSlaveEn 1 if Modbus slave mode enabled
DecSeparator Decimal separator: 44 =""46=""
Page(x) x=1..11, User Page as defined in the Page
Lists config page
IOSrv (x) x=0..9

IOSrvData(x) x=0..9

SecureUsr 1 to Enable user security pages

HomePage User defined home page

MbsSMB (x) x=1..3, Modbus Topic x
MDbsSIP (x) x=1..3, Modbus Topic x IP address

Chapter 5
Configuration fields

Setup/General/General/

System
Setup/General/General/

System
Setup/General/General/

System
Setup/General/General/

Script Setup

System
Setup/General/General/

IO Server Config > Modbus

IO Server Config > Modbus

IO Server Config > Modbus
IO Server Config > Modbus
IO Server Config > Modbus

System
Setup/General/General

IO Server Config > Modbus
IO Server Config > Modbus

Pages List

"Corresponding 10 Server
Config"

System
Setup/General/General

System
Setup/General/General

IO Server Config [Modbus

Page 116 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 5

Configuration fields

FtpServerPort FTP Server port System
Setup/General/General

FtpServerAddr FTP server address System
Setup/General/General

FtpUserName FTP login name System
Setup/General/General

FtpPassword FTP password System
Setup/General/General

SmipAllowBé64

MbsEn(x) x=1..3, Modbus Topic x enabled (1 if IO Server Config [1 Modbus
enabled, 0 otherwise)

FTPC_SDTO

FTPC_SCTO

FTPC_ACTO

FTPC_RDTO

DNS_SRTO
SnmpCom(x) x=1..5, SNMP Community x System Setup/General/SNMP
SnmpR x=1..5, SNMP Community x Read enabled System Setup/General/SNMP
SnmpW x=1..5, SNMP Community x Write enabled System Setup/General/SNMP

SnmpAIWAIl Accepts SNMP packet from any host (1 = System Setup/General/SNMP

enabled)

SnmpHIp(x) x=1..5, SNMP Host x IP Address System Setup/General/SNMP
SnmpHCom(x) x=1..5, SNMP Host x Community System Setup/General/SNMP
SnmpHTrap(x) x=1..5, SNMP Host x Trap enabled System Setup/General/SNMP
SnmpHAIw(x) x=1..5, SNMP Host x access allowed System Setup/General/SNMP

MbsBits* Modbus Bits (7 or 8) N/A
AIMaxTry Number of times an action is retried in System

case of error Setup/General/General
AlRetryInt Interval between action trials in case of System

error Setup/General/General

Table 33: System Configuration fields

The MbsBits parameter specifies how to Modbus IO Server will read the bytes. The possible
values are 7 and 8 bits/byte.

Page 117 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 5
Configuration fields

5.2. COM Section

This section describes the fields found in the comcfg.ixt file. All the fields are readable and
writable (unless otherwise specified) using GETSYS and SETSYS with the COM parameter.

* Example
Setting the First ISP phone number (parameter = PPPCIPhonel) to number 0123456789

SETSYS COM, "LOAD"
SETSYS COM, "PPPClPhonel","0123456789"
SETSYS COM, "SAVE"

The following table describes the fields accessible from the communication configuration.
The last column gives the ewon configuration web page where the parameter appears.

The web pages are found under System Setup.

Ethip Ethernet IP address Communication/Ethernet
EthMask Ethernet IP Mask Communication/Ethernet
EthGW Ethernet Gateway Communication/Ethernet
ModeminitStr Modem Initialization String Communication/Modem
PPPServerlP PPP Server IP Address Communication/Dial UP
(PPP)
PPPServerMask PPP Server IP Mask Communication/Dial UP
(PPP)
PPPServerGW PPP Server Gateway Communication/Dial UP
(PPP)
PPPClientlp PPP Client IP Address Communication/Dial UP
(PPP)
PPPCICompress Enable PPP Client Compression (enabled Communication/Dial UP
=1) (PPP)
PPPCIPhonel ISPT Phone number Communication/Dial UP
(PPP)
PPPCIUserName1l ISP1 User Name Communication/Dial UP
(PPP)
PPPCIPasswordl ISP1 Password Communication/Dial UP
(PPP)
PIN PIN code (for GSM modem usage only) Communication/Modem

Page 118 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

RTEnlpFwrd

DiallnOut

INnEqualOut

DialTO

Clidle

Srvidle

EthDns1
EthDns2
PPPSrvCompress

PPPCINeedChap

PPPCIPhone?2

PPPClUserName2

PPPCIPassword?2

CallAlloc

CdallAllocRst

CBEnabled
CBDelay

CBldleTime

CBPuUbEMail

CBDDnsType

Page 119 /130

Enable IP forwarding (1 = enabled)

Enable Dial in / out / both (1 /2/ 3)

Enable Usage of dial in connection to

dial out (enabled = 1)

Dial out timeout

Client mode idle timeout before hang

up

Server mode idle timeout before hang

up
Ethernet DNS 1 IP Address
Ethernet DNS 2 IP Address

Enable PPP Server compression (enabled

:])

Enable CHAP authentication
requirement (enabled = 1)

ISP2 Phone number

ISP2 User Name

ISP2 Password

Allocated Budget

Budget Reset Period

Enable callback (enabled = 1)

Delay after rings before callback (in
seconds)

Callback mode idle timeout before
hang up

Email address where to send the IP
address when callback

Dynamic DNS Type

Chapter 5
Configuration fields

Communication/Router
(Filter)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Ethernet
Communication/Ethernet

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Dial UP
(PPP)

Communication/Callback

Communication/Callback

Communication/Callback

Communication/Callback

Communication/Callback

Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK Chapter 5

Configuration fields

CBDDnsUName Dynamic DNS User Name Communication/Callback
CBDDnsPass Dynamic DNS Password Communication/Callback
CBDDnsHName Dynamic DNS Host Name Communication/Callback
CBDDnsDName Dynamic DNS Domain Name Communication/Callback
CBType Callback type (0 = Callback onring, 1 = Communication/Callback
Callback on User’'s Request)
CBNbRing Minimal number of rings to detect Communication/Callback
callback
CBTo ISP to use when calling back (1/ 2)
RTENTransFw Enable fransparent forwarding (enabled Communication/Router
=1) (Filter)
RTEnAuthRt Enable user authentication when Communication/Router
forwarding (enabled = 1) (Filter)
RTEnableNat Enable Network Address Translation Communication/Router
(enabled = 1) (Filter)
ModDetCnt Number of time the eWON ftries to N/A
detects the modem in case of error
(default = 1)
ModExpType* Expected modem type (default =-1) N/A
ModFrcType* Forced modem type (default = -1) N/A
SSAM** Server Access Selection Mode N/A
CBNbRingOH Number of rings more than the minimal Communication/Callback
for callback

Table 34: Communication Configuration fields

* The following table describes the possible modem type values

Not used -1
No modem 0
14400 baud 1
33600 baud 2

56600 3
ISDN 4

Page 120/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 5

Configuration fields

Unknown 5
Wavecom Wismo Q2403 0X83
GMS/GPRS Modem type can be found in the eWON Information page you open by
clicking on the eWON Logo. In the above case: “Internal BIBAND GSM
(131)”

Table 35: Modem type values

** The following table describes the SSAM possible values:

The last server that worked -1
will be used for next call

Return to first 0 (default)
Always use server 1 1
Always use server 2 2

Table 36: SSAM values

5.3. TAG Section

This section describes the configuration fields for a single Tag. The fields are readable and
writable using GETSYS and SETSYS with the TAG parameters and the Tag name.

* Example

Printing the alarm status and setting the value (to 45) of the Tag “testTag”.

SETSYS TAG, "LOAD", "testTag"
PRINT GETSYS TAG, "alstat"
SETSYS TAG, "TAGVALUE", 45
SETSYS TAG, "DoSetVal",1
SETSYS TAG, "SAVE"

The following table describes the fields accessible from the Tag configuration. The web
pages are found under Tag Setup/Tag Name.

T

|d Tag id. Not editable through the web page (only for program
usage)
Name Tag name
Description Tag description

Page 121 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

ServerName
TopicName
Address
Coef
Offset
LogEnabled
AlEnabled
Type
AlBool
MemTag
MbsTcpEnabled
MbsTcpFloat

SnmpEnabled
RTLogEnabled
AlAutoAck

ForceRO
SnmpOID
AlHint
AlHigh
AlLow
AlTimeDB
AlLevelDB
Pageld
RTLogWindow
RTLogTimer
LogDB
LogTimer
AlLoLo
AlHiHi
MbsTcpRegister

Page 122 /130

10 Server the Tag gets the value from

Topic the Tag takes its basic configuration from

Tag address

Tag value multiplier coefficient

Tag value offset

Enabled Tag value logging (enabled = 1)
Enable Tag alarm (enabled = 1)

0 = Boolean, 1 = analog

Boolean Tag alarm level

Is memory Tag (1 = memory Tag, 0 = other)
Modbus TCP Enable

Consider as float value (2 subsequent
registers)

Enable SNMP (enabled = 1)
Enable real time logging (enabled = 1)

Enable alarm auto-acknowledging
(enabled = 1)

Force read-only Tag

SNMP OID

Alarm hint

Alarm high level (warning level)
Alarm low level (warning level)
Alarm interval deadband

Alarm level deadband

Page the Tag is published on
Real-time logging time span
Real-time logging interval
Historical logging deadband
Historical logging interval

Alarm low-low level (danger level)
Alarm high-high level (danger level)

Enabled access to the Tag as a Modbus

Programming Reference Guide | RG 006

Chapter 5
Configuration fields

ome omin

€ cWON

MACHINES CAN TALK

Chapter 5
Configuration fields

e Jomerpen

register (enabled = 1)

MbsTcpCoef Tag value Modbus TCP publishing multiplier

coefficient
MbsTcpOffset Tag value Modbus TCP publishing offset
EEN* Enable Email alarm notification config
ETO Email alarm recipient(s) (coma separated) alarm notification config
ECC Email alarm carbon-copy recipient(s) alarm notification config
ESU Email alarm subject alarm notification config
EAT Email alarm aftachment (as Export Block alarm notification config
Descriptor)
ESH Enable Email sent as SMS (enabled = A) alarm notification config
SEN* Enable SMS alarm notification config
STO SMS alarm recipient alarm notification config
SSU SMS alarm subject alarm notification config
TEN* Enable trap (SNMP) alarm notification config
TSU* Trap (SNMP) subject alarm notification config
FEN* Enable FTP alarm notification config
FFN FTP destination file name alarm notification config
FCO FTP file content (as Export Block Descriptor) alarm nofification config
AlStat Alarm status (0 = no alarm, 1 =in alarm) View |0 page
ChangeTime (ReadOnly) Last change time View 10 page
TagValue (ReadOnly) Tag current value View |0 page
TagQuality (ReadOnly) Quality of the Tag View 10 page
AlType (ReadOnly) Alarm Status of the Tag View 10 page
DoDelete (WriteOnly) Delete the Tag (0 = do not
delete, 1 = delete)
DoAck (WriteOnly) Acknowledge the Tag (0 = do
not acknowledge, 1 = acknowledge)
DoSetval (WriteOnly) Set to 1 to be able to modify
TagValue

Table 37: TAG Configuration fields

Page 123 /130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Chapter 5
Configuration fields

5.3.1. Send on alarm notification patterns

In the table below are listed the different pattern values you will find in the in the “:TaglList”
section from the config.ixt file, in the EEN, SEN, TEN and FEN columns, depending on the way
you configure the send on alarm action for the Tag (that means, depending on which
alarm status will frigger the send on alarm action):

I T TR
0

X 8
X 16
X 32
X 2
Table 38: Pattern for TaglList parameter from config.txt
If you activate several of the send on alarm actions checkboxes, the result of the value will
be an addition of selected fields’ values.
* Example

If you activate “ALM" and “END" to trigger an SMS sending, the value of the “SEN" field will
be 10.

5.3.2. Setting a Tag value, deleting a Tag and
acknowledging an alarm

A Tag value can be set using the following sequence (shown for a Tag MM1):

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "TAGVALUE", 1234
SETSYS TAG, "DoSetval",1
SETSYS TAG, "SAVE"

There are other ways to change a Tag's value. Examples:

MM1@ = 1234
setio "MM1",1234

Page 124 / 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK
Chapter 5

Configuration fields

Let's the MM1 Tag is in alarm state. It is then possible to acknowledge its alarm with the
following command:

SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "DoAck", 1
SETSYS TAG, "SAVE"

It is possible to delete a Tag with:

SETSYS TAG, "LOAD", "MM1"

SETSYS TAG, "DoDelete", 1

SETSYS TAG, "SAVE"

CFGSAVE : REM Writes configuration to flash

Add Tag
SETSYS TAG, "LOAD", "MM1"
SETSYS TAG, "Name", "New TagName"
SETSYS TAG, "Address", "New address"

SETSYS TAG, "SAVE"
CFGSAVE : REM Writes configuration to flash

- Note -

The fields that are not specified will be taken over from the "MM1" tag

5.4. User Section

This section describes the configuration fields for a single user. The fields are readable and
writable using GETSYS and SETSYS with the USER parameters and the user name.

The following table describes the fields accessible from the User configuration. The web
pages are found under Users Setup/[The name from the User].

= e Tomepron

Id User Id (only for programs simplicity)
FirstName User first name
Lasthame User last name

Page 125/ 130 Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Login
Password
Information
Right

EMA
SMS
AccessPage
AccessDir
CBEn
CBMode
CBPhNum
DoDelete

* Example

Change_password:

SETSYS USER, "LOAD",

Chapter 5
Configuration fields

Name Description

User login
User password
User information

Combination of bits for user rights on Tags (acknowledge, view,
write, ...)

User Email address

User SMS number

The page the user is allowed to access

The directory (and subdirectories) the user is allowed to access
Allow the user to use callback (allowed = 1)

Callback phone number is: 0 = mandatory, 1 = user defined
Callback phone number

Delete the User (0 = do not delete, 1 = delete)

Table 39: USERS Configuration fields

"pierre"

SETSYS USER, "password", "new password"

SETSYS USER, "SAVE"

CFGSAVE : REM Writes configuration to flash

Add_user:

SETSYS USER, "LOAD", "username" : REM The "username" must be an existing user.
The same access rights will be applied on the new user

SETSYS USER, "login", "new username"

SETSYS USER, "password", "new password"

SETSYS USER, "SAVE"

Page 126 / 130

CFGSAVE : REM Writes configuration to flash

Programming Reference Guide | RG 006

"eWOeN

MACHINES CAN TALK Chapter 5

Configuration fields
Delete_user:

SETSYS USER, "LOAD", "username"

SETSYS USER, "DoDelete", 1

SETSYS USER, "SAVE"

CFGSAVE : REM Writes configuration to flash

Page 127 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

IndeXx of Pictures

lllustration Index

lllustration 1: BASIC code of the INTrOAUCTION.......euviiiiiieeeeee e 7
lllustration 2: Conversion 1O AN IEEE flOQT ... e 36
lllustration 3: Conversion 1O AN IEEE flOQT........v e 99
NUSTTATION 4: BASIC IDE WINAOW....uuiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt e e e e e e eaaaae s 111

Page 128 / 130 Programming Reference Guide | RG 006

TeWON

MACHINES CAN TALK

Index of Tables

Index of Tables

TADIE T: BASIC QUEUE = Tttt ettt e ettt e e s tae e e s eae e e sabe e e e s nnsssbaeaaaeeeeennnnnses 8
TADIE 2: BASIC QUEUE = 2.ttt ettt e st e e ae e e e tae e e s saeeessaaa e s s nnsssaaeaaaaeeeennnnnnes 9
TAbIE 3: BASIC QUEUE - 3.ttt e e tae e e st e e e et e e e stb e e e stbae e e sssaaaaaaeaeeeeeannnnnns 10
TAble 4: BASIC QUEUE - 4.ttt ettt e e e et ae e e e e et e e e e e e e nnnnan 10
TABIE 5: BASIC QUEUE - B.....eeeeeeeeeee ettt ettt e e e ae e e et e e e s aaaeeesnsabaaeaaaeeeesnnnnnnns 11
Table 6: TaQ ACCESS METNOAS......ii ettt e e e e e aarr e e e e e e eeennnns 21
Table 7: BASIC keywords syntaxX CONVENTION.......coouviiiiieeceeeee e 23
Table 8: Values returned by the ALSTAT COMMONG....cccoiiiiiiieiiecciieeee et 25
Table 9: Special keywords for ERASE COMMONG........oooiiiiiiiiiieeeiee e 35
Table 10: Etype of FCNV COMMANG......oviiiiiiiiieee e 36
Table 11: Value /USIHIN BINAIY MOGE ...ttt e e e 4]
Table 12: GETSYS & SETSYS PAIAMETEIS. ...ttt e e e e e e e 47
TADIE 13: PRG GrOUR fIEIAS...ee ittt ettt et e e e e etae e e e eaaaaaeeeeeeeeeeennns 49
Table 14: SETSYS TAG, “loQd” €XAMPIES.......ciiieeiireeeee ettt 52
Table 15: First case, | = 0 for IORCV COMMOANd......cooiiiiiciieeeee et e e 63
Table 16: Third case, | = 1 for IORCV COMMAONG.......uiiiiiiiiieciiee ettt e e 64
Table 17: LOGEVENT — RANGE Of VAIUES........uviieieeeeeee ettt e e e e 66
Table 18: The various “ONXXXX" fUNCHIONS........cicuiiieciie ettt e vae e e aree e 70
Table 19: ONDATE — TiIMer INterval SYNTOX......ooocuuriiee ettt 73
Table 20: ONDATE — Timer INterval OPeratOrs..... ...ttt evae e e e 73
Table 21: Task Planner — TIMEr €XAMIPIES......coouuieeeeeeeeceee ettt eectee e et et e e eetrre e e e e eeeanns 74
Table 22: ONPPP — EVTINFO VAIUES........ccouiieiiiecieeetee ettt e eraeesaveeeennaee s 75
Table 23: ONVPN — EVTINFO VAIUES......couviicrieetee ettt et veesaee e e earaee s 78
Table 24: ONWAN — EVTINFO VAIUES.......uuieie ettt e e 79
Table 25: OPEN read & write operations parameEters..........veeeveeeeeceee e 80
Table 26: OPEN - different file type eXxample ... 81
Table 27: OPEN — different file type eXAmMPIE 2......ooo e 81
Table 28: SFMT function -Etype value and CONVEISION.......uvveeiiieeiieeeeeeeeiveeeeveeevevevevveveaeeanans 99
Table 29: SFMT — Conversion from float to string using Sformat - T, 101
Table 30: SFMT — Conversion from float to string using Sformat - 2.......cooeeeciiiieeiieeieees 102
Table 31: VAL = EVTINFO VAIUES........oviieeee ettt et e st e e s e aarn e e e e e e e e e eanes 108
TALIE 32: BASIC EITOr COUES. ...ttt ettt e e e et e e eaae e e e aaaeeeeabaeeeeennes 114
Table 33: System Configuration fIElAS..........ooovieeee e e 117
Table 34: Communication Configuration fields.........coueeeeieicciieecceeeeceee e, 120
TADIE 35: MOAEM 1Y VAIUES....uveeeee ettt eeeeaae e e e eeataaeeeeeenannns 121
TADIE 36: SSAM VAIUES ...ttt e ettt e e e e ettt ae e e e e e taaaeeeeesassssssssssssssnssnssnnsnnnnes 121
Table 37: TAG Configuration fIElAS.eiceee et 123
Table 38: Pattern for TagList parameter from Config.tXt. ..., 124
Table 39: USERS Configuration fIeldS.........eeeeiee ettt 126

Page 129 /130

Programming Reference Guide | RG 006

€ cWON

MACHINES CAN TALK

Revision Information

Revision

Revision History

Revision Level “ Description

1.0 24/05/2016 Original new version of RG-002:
Programming Reference Guide

1.1 05/12/2016 Correction Errorin 2.1.76 TGET & 2.1.77 TSET

1.2 13/03/2017 Changed: RequestHttpx syntax
Changed: WriteEBD

1.3 12/06/2017 Changed: Chapter 1.2 : program.bas
content

Document build number: 26
Note concerning the warranty and the rights of ownership:

The information contained in this document is subject to modification without notice. Check
https://ewon.biz/support for the latest documents releases.

The vendor and the authors of this manual are not liable for the errors it may contain, nor for their
eventual consequences.

No liability or warranty, explicit or implicit, is made concerning the quality, the accuracy and the
correctness of the information contained in this document. Under no circumstances can the
manufacturer's responsibility be called for direct, indirect, accidental or other damage occurring
from any defect of the product or mistakes coming from this document.

The product names mentioned in this manual are for information purposes only. The trade marks and
the product names or marks contained in this document are the property of their respective owners.

This document contains materials protected by the International Copyright Laws. All reproduction
rights are reserved. No part of this handbook can be reproduced, transmitted or copied in any way
without written consent from the manufacturer and/or the authors of this handbook.

HMS Industrial Networks SA

Page 130/ 130 Programming Reference Guide | RG 006

	1. Endnotes
	1. BASIC language definition
	1.1. Introduction
	1.2. Program flow
	1.2.1. Character String
	1.2.2. Command
	1.2.3. Integer
	1.2.4. Real
	1.2.5. Alphanumeric character
	1.2.6. Function
	1.2.6.1. Function declaration
	1.2.6.2. Function return value
	1.2.6.3. Keyword “return” inside functions
	1.2.6.4. Function parameters
	1.2.6.5. Function call
	1.2.6.6. Passing arguments by reference
	1.2.6.7. Recursive function call

	1.2.7. Label
	1.2.7.1. Local label

	1.2.8. Operators priority
	1.2.9. Type of Variables
	1.2.9.1. Integer variable
	1.2.9.2. Real variable
	1.2.9.3. Alphanumeric string
	1.2.9.4. Characters arrays
	1.2.9.5. Real arrays
	1.2.9.6. Local Variables

	1.2.10. TagName variable
	1.2.11. Tag Access
	1.2.12. Limitations of the BASIC

	2. List of Keywords
	2.1. Syntax convention
	2.1.1. # (bit extraction operator)
	2.1.2. // (comment)
	2.1.3. ABS
	2.1.4. ALMACK
	2.1.5. ALSTAT
	2.1.6. AND
	2.1.7. ASCII26
	2.1.8. BIN$
	2.1.9. BNOT
	2.1.10. CFGSAVE
	2.1.11. CHR$
	2.1.12. CLEAR
	2.1.13. CLOSE
	2.1.14. CLS
	2.1.15. DAY
	2.1.16. DEC
	2.1.17. DIM
	2.1.18. DMSYNC
	2.1.19. DOW
	2.1.20. DOY
	2.1.21. DYNDNS
	2.1.22. END
	2.1.23. EOF
	2.1.24. ERASE
	2.1.25. FCNV
	2.1.25.1. Convert from an IEEE float representation
	2.1.25.2. Compute CRC16 of a string
	2.1.25.3. Compute LRC of a string
	2.1.25.4. Convert from an Integer representation
	2.1.25.5. Convert string to a Float using a SFormat specifier
	2.1.25.6. Convert string to an Interger using a SFormat specifier
	2.1.25.7. Convert time as string into time as Integer

	2.1.26. FOR NEXT STEP
	2.1.27. GET
	2.1.27.1. /usr in Binary mode
	2.1.27.2. /usr in Text mode
	2.1.27.3. COM – Binary mode
	2.1.27.4. TCP/UDP in Binary mode

	2.1.28. GETFTP
	2.1.29. GETHTTP
	2.1.30. GETIO
	2.1.31. GETSYS, SETSYS
	2.1.31.1. PRG
	2.1.31.2. SYS
	2.1.31.3. COM
	2.1.31.4. INF
	2.1.31.5. TAG
	2.1.31.6. USER
	2.1.31.7. Procedure
	2.1.31.7.1. Recognized field values per group
	2.1.31.7.2. TAG Load
	2.1.31.7.3. Extended syntax to access IOServer lists of parameters

	2.1.32. GO
	2.1.33. GOSUB RETURN
	2.1.34. GOTO
	2.1.35. HALT
	2.1.36. HEX$
	2.1.37. HTTPX
	2.1.37.1. REQUESTHTTPX
	2.1.37.2. RESPONSEHTTPX

	2.1.38. IF, THEN, ELSE, ENDIF
	2.1.38.1. Short IF Syntax
	2.1.38.2. Long IF Syntax

	2.1.39. INSTR
	2.1.40. INT
	2.1.41. IOMOD
	2.1.42. IORCV
	2.1.43. IOSEND
	2.1.44. LEN
	2.1.45. LOGEVENT
	2.1.46. LOGIO
	2.1.47. LTRIM
	2.1.48. MEMORY
	2.1.49. MOD
	2.1.50. MONTH
	2.1.51. NOT
	2.1.52. NTPSync
	2.1.53. ONxxxxxx
	2.1.53.1. ONALARM
	2.1.53.2. ONCHANGE
	2.1.53.3. ONDATE
	2.1.53.3.1. Timer Interval settings

	2.1.53.4. ONERROR
	2.1.53.5. ONPPP
	2.1.53.6. ONSMS
	2.1.53.7. ONSTATUS
	2.1.53.8. ONTIMER
	2.1.53.9. ONVPN
	2.1.53.10. ONWAN

	2.1.54. OPEN
	2.1.54.1. Introduction to file management
	2.1.54.2. OPEN general syntax
	2.1.54.3. Different File/stream types
	2.1.54.3.1. FILE open /usr
	2.1.54.3.2. TCP or UDP stream open Syntax [command]
	2.1.54.3.3. COM port open Syntax [command]
	2.1.54.3.4. EXP export bloc descriptor open Syntax [command]

	2.1.55. OR
	2.1.56. PI
	2.1.57. PRINT - AT
	2.1.58. PRINT #
	2.1.59. PUT
	2.1.59.1. File Syntax[Command] – Binary mode
	2.1.59.2. File Syntax[Command] – Text mode
	2.1.59.3. COM Syntax[Command] – Binary mode
	2.1.59.4. TCP/UDP Syntax[Command] – Binary mode

	2.1.60. PUTFTP
	2.1.61. PUTHTTP
	2.1.62. REBOOT
	2.1.63. REM
	2.1.64. RENAME
	2.1.65. RTRIM
	2.1.66. SENDMAIL
	2.1.67. SENDSMS
	2.1.68. SENDTRAP
	2.1.69. SETIO
	2.1.70. SETTIME
	2.1.71. SFMT
	2.1.71.1. Convert float to IEEE float representation
	2.1.71.2. Convert integer to string
	2.1.71.3. Convert a float to a string using a SFormat specifier
	2.1.71.4. Convert an integer to a string using a SFormat specifier
	2.1.71.5. Convert time as Integer into time as String

	2.1.72. SGN
	2.1.73. SQRT
	2.1.74. STR$
	2.1.75. TIME$
	2.1.76. TGET
	2.1.77. TSET
	2.1.78. TYPE$
	2.1.79. VAL
	2.1.80. WAIT
	2.1.81. WOY
	2.1.82. WriteEBD
	2.1.83. XOR

	3. Debug a BASIC program
	4. BASIC Error Codes
	5. Configuration fields
	5.1. SYS Config
	5.2. COM Section
	5.3. TAG Section
	5.3.1. Send on alarm notification patterns
	5.3.2. Setting a Tag value, deleting a Tag and acknowledging an alarm

	5.4. User Section

	Revision
	Revision History

